【題目】如圖,矩形ABCD的對角線AC與BD交于點O,過點O作BD的垂線分別交AD,BC于E,F兩點.若AC=2,∠DAO=30°,則FC的長度為( )
A. 1B. 2
C. D.
科目:初中數(shù)學 來源: 題型:
【題目】幾何計算:
如圖,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度數(shù).
解:因為∠BOC=3∠AOB,∠AOB=40°
所以∠BOC=__________°
所以∠AOC=__________ + _________
=__________° + __________°
=__________°
因為OD平分∠AOC
所以∠COD=__________=__________°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將的邊繞點順時針旋轉得到,邊繞點逆時針旋轉得到,,連接,作的中線.
圖① 圖② 圖③
(初步感知)
(1)如圖①,當,時,的長為 ;
(探究運用)
(2)如圖②,為任意三角形時,猜想與的數(shù)量關系,并證明.
(應用延伸)
(3)如圖③,已知等腰,,延長到,延長到,使,將繞點順時針旋轉一周得到,連接、,若,求的長度(用含、的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,小王在校園上的A處正面觀測一座教學樓墻上的大型標牌,測得標牌下端D處的仰角為30°,然后他正對大樓方向前進5m到達B處,又測得該標牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標牌的上端與樓房的頂端平齊.求此標牌上端與下端之間的距離(≈1.732,結果精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,過點C(1,3)、D(3,1)分別作x軸的垂線,垂足分別為A、B.
(1)求直線CD和直線OD的解析式;
(2)點M為直線OD上的一個動點,過M作x軸的垂線交直線CD于點N,是否存在這樣的點M,使得以A、C、M、N為頂點的四邊形為平行四邊形?若存在,求此時點M的橫坐標;若不存在,請說明理由;
(3)若△AOC沿CD方向平移(點C在線段CD上,且不與點D重合),在平移的過程中,設平移距離為t,△AOC與△OBD重疊部分的面積記為s,試求s與t的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關系式,并求出自變量x的取值范圍;
(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】朗讀者自開播以來,以其厚重的文化底蘊和感人的人文情懷,感動了數(shù)以億計的觀眾,岳池縣某中學開展“朗讀”比賽活動,九年級、班根據(jù)初賽成績,各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績滿分為100分如圖所示.
平均數(shù) | 中位數(shù) | 眾數(shù) | |
九班 | 85 | 85 | |
九班 | 80 |
根據(jù)圖示填寫表格;
結合兩班復賽成績的平均數(shù)和中位數(shù),分析哪個班級的復賽成績較好;
如果規(guī)定成績較穩(wěn)定班級勝出,你認為哪個班級能勝出?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進甲、乙兩種商品,已知每件甲種商品的價格比每件乙種商品的價格貴10元,用350元購買甲種商品的件數(shù)恰好與用300元購買乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品每件的價格各是多少元?
(2)計劃購買這兩種商品共50件,且投入的經(jīng)費不超過3200元,那么,最多可購買多少件甲種商品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象過A(2,0), B(0,﹣1)和C(4,5)三點.
(1)求二次函數(shù)的解析式;
(2)設二次函數(shù)的圖象與x軸的另一個交點為D,求點D的坐標;
(3)在同一坐標系中畫出直線y=x+1,并寫出當x在什么范圍內(nèi)時,一次函數(shù)的值大于二次函數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com