【題目】如圖,已知點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段.在連接兩點所得的所有線段中任取一條線段,取到長度為 的線段的概率為( )

A.
B.
C.
D.

【答案】B
【解析】連接AF,EF,AE,過點F作FN⊥AE于點N,

∵點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,

∴AF=EF=1,∠AFE=120°,

∴∠FAE=30°,

∴AN= ,

∴AE= ,同理可得:AC=

故從任意一點,連接兩點所得的所有線段一共有15種,任取一條線段,取到長度為 的線段有6種情況,

則在連接兩點所得的所有線段中任取一條線段,取到長度為 的線段的概率為:

故答案為:B.

首先依據(jù)正六邊形的性質以及勾股定理得出AE=,接下來,確定出所得的線段的總數(shù)和長度為的線段的條數(shù),最后再利用概率公式求解即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=BC=10,以AB為直徑作⊙O分別交AC,BC于點D,E,連接DE和DB,過點E作EF⊥AB,垂足為F,交BD于點P.

(1)求證:AD=DE;
(2)若CE=2,求線段CD的長;
(3)在(2)的條件下,求△DPE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,BC=6,將矩形ABCD繞B逆時針旋轉30°后得到矩形GBEF,延長DA交FG于點H,則GH的長為( )

A.8﹣4
B. ﹣4
C.3 ﹣4
D.6﹣3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】林灣鄉(xiāng)修建一條灌溉水渠,如圖,水渠從A村沿北偏東65°方向到B村,從B村沿北偏西25°方向到C村水渠從C村沿什么方向修建,可以保持與AB的方向一致?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“五一”小長假期間,某超市為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”、“30元”的字樣.規(guī)定:顧客在本超市一次性購物滿500元以上均可獲得兩次摸球的機會(摸出小球后放回).超市根據(jù)兩小球所標金額的和返還相應的代金券.
(1)顧客甲購物1000元,則他最少可獲元代金券,最多可獲元代金券.
(2)請用樹形圖或列表方法,求出顧客甲獲得不低于30元(含30元)代金券的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點A落在AB上的點D處;再將邊BC沿CF翻折,使點B落在CD的延長線上的點B′處,兩條折痕與斜邊AB分別交于點E,F(xiàn),則線段B′F的長為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知:如圖,E、F分別是ABCDADBC邊上的點,且AE=CF

1)求證:△ABE≌△CDF

2)若M、N分別是BE、DF的中點,連接MF、EN,試判斷四邊形MFNE是怎樣的四邊形,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D、E分別是△ABCAB、BC上的點,AD=2BD,BE=CE.若SΔABC=18,△ADF的面積為,△CFE的面積為,則=________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解本校九年級男生“引體向上”項目的訓練情況,隨機抽取該年級部分男生進行了一次測試(滿分15分,成績均記為整數(shù)分),并按測試成績(單位:分)分成四類:A類(12≤m≤15),B類(9≤m≤11),C類(6≤m≤8),D類(m≤5)繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:

(1)本次抽取樣本容量為 , 扇形統(tǒng)計圖中A類所對的圓心角是度;
(2)請補全統(tǒng)計圖;
(3)若該校九年級男生有300名,請估計該校九年級男生“引體向上”項目成績?yōu)镃類的有多少名?

查看答案和解析>>

同步練習冊答案