【題目】如圖,在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,M為EF中點,則AM的最小值為( )

A.2
B.2.4
C.2.6
D.3

【答案】B
【解析】先求證四邊形AFPE是矩形,再根據(jù)直線外一點到直線上任一點的距離,垂線段最短,利用相似三角形對應邊成比例即可求得AP最短時的長,然后即可求出AM最短時的長.

連結AP,在△ABC中,AB=6,AC=8,BC=10,
∴∠BAC=90°,
∵PE⊥AB,PF⊥AC,
∴四邊形AFPE是矩形,
∴EF=AP.
∵M是EF的中點,
∴AM=AP,
根據(jù)直線外一點到直線上任一點的距離,垂線段最短,
即AP⊥BC時,AP最短,同樣AM也最短,
∴當AP⊥BC時,△ABP∽△CBA,
,

∴AP最短時,AP=4.8
∴當AM最短時,AM==2.4.
故選B.


【考點精析】根據(jù)題目的已知條件,利用垂線段最短和直角三角形斜邊上的中線的相關知識可以得到問題的答案,需要掌握連接直線外一點與直線上各點的所有線段中,垂線段最短;現(xiàn)實生活中開溝引水,牽牛喝水都是“垂線段最短”性質(zhì)的應用;直角三角形斜邊上的中線等于斜邊的一半.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有兩個相等的實數(shù)根.其中正確的結論有(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=2,E是AB的中點,直線l平行于直線EC,且直線l與直線EC之間的距離為2,點F在矩形ABCD邊上,將矩形ABCD沿直線EF折疊,使點A恰好落在直線l上,則DF的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把邊長相等的正五邊形ABGHI和正六邊形ABCDEF的AB邊重合,按照如圖的方式疊合在一起,連接EB,交HI于點K,則∠BKI的大小為( 。

A.90°
B.84°
C.72°
D.88°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在圖(1)中,A1、B1、C1分別是△ABC的邊BC、CA、AB的中點,在圖(2)中,A2、B2、C2分別是△A1B1C1的邊B1C1、C1A1、A1B1的中點,…,按此規(guī)律,則第n個圖形中平行四邊形的個數(shù)共有

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,D為AB上一點,E為BC上一點,且AC=CD=BD=BE,∠A=50°,則∠CDE的度數(shù)為( 。
A.50°
B.51°
C.51.5°
D.52.5°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.

(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知點E、F分別是AD、CE邊上的中點,且SBEF=4cm2 , 則SABC的值為(  )

A.1cm2
B.2cm2
C.8cm2
D.16cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分別繞直線AB,CD旋轉(zhuǎn)一周,所得幾何體的表面積分別為S1 , S2 , 則|S1﹣S2|=(平方單位)

查看答案和解析>>

同步練習冊答案