如圖,點D、E、F分別是△ABC三邊AB、BC、AC的中點,則△DEF的周長是△ABC周長的( 。
分析:根據(jù)D、E、F分別是AB、AC、BC的中點,可以判斷DF、FE、DE為三角形中位線,利用中位線定理求出DF、FE、DE與AB、BC、CA的長度關(guān)系即可解答.
解答:解:∵D、E、F分別是AB、BC、AC的中點,
∴ED、FE、DF為△ABC中位線,
∴DF=
1
2
BC,F(xiàn)E=
1
2
AB,DE=
1
2
AC;
∴DF+FE+DE=
1
2
BC+
1
2
AB+
1
2
AC=
1
2
(AB+BC+CA);
即△DEF是△ABC的周長的
1
2

故選A.
點評:本題考查了三角形的中位線定理,根據(jù)中點判斷出中位線,再利用中位線定理是解題的基本思路.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點D,E,F(xiàn)分別是△ABC(AB>AC)各邊的中點,下列說法中,錯誤的是(  )
A、EF與AD互相平分
B、EF=
1
2
BC
C、AD平分∠BAC
D、△DEF∽△ACB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點D,E,F(xiàn)分別是△ABC(AB>AC)各邊的中點,下列說法中,錯誤的是(  )
A、AD平分∠BAC
B、EF=
1
2
BC
C、EF與AD互相平分
D、△DFE是△ABC的位似圖形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖,點D、E、F分別是△ABC的邊AB、BC、AC的中點,連接DE、EF,要使四邊形ADEF為正方形,還需增加條件:
△ABC為等腰直角三角形,且AB=AC,∠A=90°(此題答案不唯一).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點D,E,F(xiàn)分別是△ABC的三邊AB,AC,BC上的中點,如果△ABC的面積是18cm2,則△DBF的面積是
 
cm2

查看答案和解析>>

同步練習冊答案