【題目】如圖(1)在平面直角坐標(biāo)系中,四邊形OBCD是正方形,且D(0,2),點(diǎn)E是線段OB延長(zhǎng)線上一點(diǎn),M是線段OB上一動(dòng)點(diǎn)(不包括O、B),做MN⊥DM,垂足為M,交∠CBE的平分線于點(diǎn)N.
(1)求點(diǎn)C的坐標(biāo);
(2)求證:MD=MN;
(3)如圖(2),連接DN交BC于F,連接FM,探究線段MF、CF、OM之間有什么數(shù)量關(guān)系?并證明你的結(jié)論.
圖(1) 圖(2)
【答案】(1)C(2,2);(2)見解析(3)見解析
【解析】分析:(1)由正方形的性質(zhì)可以得出OB=BC=OD就可以求出點(diǎn)C的坐標(biāo);
(2)在OD上取一點(diǎn)G,使OG=OM,就可以得出DG=BM,從而得出△GDM≌△BMN,就可以得出結(jié)論;
(3)由旋轉(zhuǎn)可以得出△FCD≌△AOD,就可以得出OA=FC,∠ADM=∠CDM,進(jìn)而得出△DMA≌△DMF,就可以得出AM=FM而得出結(jié)論.
詳解:
(1)∵四邊形OBCD是正方形,
∴OB=BC=OD,∠DOB=∠OBC=∠C=90°.
∵D(0,2),
∴OD=2,
∴OB=BC=OD=2,
∴C(2,2);
(2)在OD上取一點(diǎn)G,使OG=OM,
∴∠OGM=∠OMG=45°,
∴∠DGM=135°.
∵OD=OB,
∴OD-OG=OB-OM,
∴GD=BM.
∵M(jìn)N⊥DM,
∴∠DMN=90°,
∴∠DMO+∠NMB=90°.
∵∠DMO+∠ODM=90°,
∴∠ODM=∠BMN.
∵BN平分∠CBE,
∴∠NBE=×90°=45°,
∴∠MBN=135°,
∴∠DGM=∠MBN.
在△GDM和△BMN中
,
∴△GDM≌△BMN(ASA),
∴MD=MN;
(3)OM+CF=MF
理由:∵MD=MN,∠DMN=90°,
∴∠MDN=45°,
∴∠ODM+∠FDC=45°.
∵△DCF繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得△DOA,
∴△DCF≌△DOA,
∴AO=FC,∠ADO=∠FDC,AD=FD.
∴∠ADO+∠MDO=45°,
即∠ADM=45°.
∴∠ADM=∠CDM.
在△DMA和△DMF中
,
∴△DMA≌△DMF(SAS),
∴AM=FM.
∵AM=AO+MO,
∴AM=CF+MO,
∴OM+CF=MF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度數(shù);
(2)求證:AE是⊙O的切線;
(3)當(dāng)BC=4時(shí),求劣弧AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自行車廠一周計(jì)劃生產(chǎn)1 400輛自行車,平均每天生產(chǎn)200輛.由于各種原因,實(shí)際上每天的生產(chǎn)量與計(jì)劃量相比有出入.表是某周的生產(chǎn)情況(增產(chǎn)為正,減產(chǎn)為負(fù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 | +5 | ﹣2 | ﹣4 | +13 | ﹣10 | +16 | ﹣9 |
(1)根據(jù)記錄的數(shù)據(jù)可知該廠星期五生產(chǎn)自行車 輛;
(2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)了 輛自行車;
(3)根據(jù)記錄的數(shù)據(jù)可知該廠本周實(shí)際生產(chǎn)自行車 輛;
(4)該廠實(shí)行計(jì)件工資制,每生產(chǎn)一輛得60元,超額完成則每輛獎(jiǎng)15元,少生產(chǎn)一輛則扣15元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)Q到圖形W上每一個(gè)點(diǎn)的距離的最小值稱為點(diǎn)Q到圖形W的距離.例如正方形ABCD滿足A(1,0),B(2,0),C(2,1),D(1,1),那么點(diǎn)O(0,0)到正方形ABCD的距離為1.
(1)如果⊙P是以(3,4)為圓心,1為半徑的圓,那么點(diǎn)O(0,0)到⊙P的距離為
(2)求點(diǎn) 到直線 的距離;
(3)如果點(diǎn) 到直線 的距離為3,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 ( < <0)與x軸最多有一個(gè)交點(diǎn),現(xiàn)有以下結(jié)論:
① <0;②該拋物線的對(duì)稱軸在y軸左側(cè);③關(guān)于x的方程 有實(shí)數(shù)根;④對(duì)于自變量x的任意一個(gè)取值,都有 ,其中正確的為( )
A.①②
B.①②④
C.①②③
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(3,2),…,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過第2018次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在已知線段AB的同側(cè)構(gòu)造∠FAB=∠GBA,并且在射線AF,BG上分別取點(diǎn)D和E,在線段AB上取點(diǎn)C,連結(jié)DC和EC.
Ⅰ、如圖,若AD=3,BE=1,△ADC≌△BCE.在∠FAB=∠GBA=60或∠FAB=∠GBA=90兩種情況中任選一種,解決以下問題:
①線段AB的長(zhǎng)度是否發(fā)生變化,直接寫出長(zhǎng)度或變化范圍;
②∠DCE的度數(shù)是否發(fā)生變化,直接寫出度數(shù)或變化范圍.
Ⅱ、若AD=a,BE=b,∠FAB=∠GBA=α,且△ADC和△BCE這兩個(gè)三角形全等,請(qǐng)求出:
①線段AB的長(zhǎng)度或取值范圍,并說明理由;
②∠DCE的度數(shù)或取值范圍,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動(dòng)品牌對(duì)第一季度A、B兩款運(yùn)動(dòng)鞋的銷售情況進(jìn)行統(tǒng)計(jì),兩款運(yùn)動(dòng)鞋的銷售量及總銷售額如圖10所示:
(1)一月份B款運(yùn)動(dòng)鞋的銷售量是A款的,則一月份B款運(yùn)動(dòng)鞋銷售了多少雙?
(2)第一季度這兩款運(yùn)動(dòng)鞋的銷售單價(jià)保持不變,求三月份的總銷售額(銷售額=銷售單價(jià)×銷售量);
(3)結(jié)合第一季度的銷售情況,請(qǐng)你對(duì)這兩款運(yùn)動(dòng)鞋的進(jìn)貨、銷售等方面提出一條建議。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/s的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/s的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是ts.過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)用t的代數(shù)式表示:AE= ;DF= ;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請(qǐng)說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com