已知:拋物線
(1)拋物線與x軸有兩個交點,求m的取值范圍;
(2)當m為不小于零的整數(shù),且拋物線與x軸的兩個交點是整數(shù)點時,求此拋物線的解析式;
(3)若設(2)中的拋物線的頂點為A,與x軸的兩個交點中右側(cè)的交點為B,M為y軸上一點,且MA=MB,求M的坐標。
解:(1)∵拋物線與x軸有兩個交點, 
               ∴>0
               即>0
              解得,m<2
(2)∵m為不小于零的整數(shù),
         ∴m=0或m=1 當m=0時,y= -x2+2x+3與x軸的交點是(-1,0),(3,0)
          當m=1時,y=-x2+4x-2與x軸的交點不是整數(shù)點,舍去
          綜上所述這個二次函數(shù)的解析式是y= -x2+2x+3
(3)設M(0,y),連結(jié)MA,MB, 過點A做AC⊥y軸,垂足為C.
        ∵MA=MB  ∴AC2+CM2=OM2+OB2
            
即:1+(4-y)2=y2+3
             解得,y=1    ∴M(0,1)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點拋出(如圖),小球擦旗桿頂B而過,落地時撞擊斜坡的落點為C,已知A點與O點的距離為
5
2
米,旗桿AB高為3米,C點的垂精英家教網(wǎng)直高度為3.5米,C點與O點的水平距離為7米,以O為坐標原點,水平方向與豎直方向分別為x軸、y軸,建立直角坐標系.
(1)求小球經(jīng)過的拋物線的解析式(小球的直徑忽略不計);
(2)H為小球所能達到的最高點,求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點拋出(如圖),小球擦旗桿頂B而過,落地時撞擊斜坡的落點為C,已知A點與O點的距離為數(shù)學公式米,旗桿AB高為3米,C點的垂直高度為3.5米,C點與O點的水平距離為7米,以O為坐標原點,水平方向與豎直方向分別為x軸、y軸,建立直角坐標系.
(1)求小球經(jīng)過的拋物線的解析式(小球的直徑忽略不計);
(2)H為小球所能達到的最高點,求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源:河南省期中題 題型:解答題

已知,如圖,在平面直角坐標系中,拋物線的解析式為,將拋物線平移后得到拋線物,若拋物線經(jīng)過點(0,2),且其頂點A的橫坐標為最小正整數(shù)。
(1 )求拋物線l2 的解析式;
(2 )說明將拋物線l1 如何平移得到拋物線l2 ;
(3 )若將拋物線l2 沿其對稱軸繼續(xù)上下平移,得到拋物線l3 ,設拋物線l3 的頂點為B ,直線OB 與拋物線l3 的另一個交點為C .當OB=OC 時,求點C 的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知m、n是方程的兩個實數(shù)根,且m<n,拋物線的圖像經(jīng)過點A(m,0)、B(0,n).  

(1)求這個拋物線的解析式;

(2)設(1)中拋物線與x軸的另一交點為C,拋物線的

頂點為D,試求出點C、D的坐標和△BCD的面積;

(注:拋物線的頂點坐標為

(3)P是線段OC上的一點,過點P作PH⊥x軸,與拋

物線交于H點,若直線BC把△PCH分成面積之比

為2:3的兩部分,請求出P點的坐標.              

查看答案和解析>>

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2001•青海)在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點拋出(如圖),小球擦旗桿頂B而過,落地時撞擊斜坡的落點為C,已知A點與O點的距離為米,旗桿AB高為3米,C點的垂直高度為3.5米,C點與O點的水平距離為7米,以O為坐標原點,水平方向與豎直方向分別為x軸、y軸,建立直角坐標系.
(1)求小球經(jīng)過的拋物線的解析式(小球的直徑忽略不計);
(2)H為小球所能達到的最高點,求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

同步練習冊答案