【題目】如圖,矩形ABCD沿著直線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)E,AD=8,AB=6,求AE的長(zhǎng).

【答案】解:∵△BDC′是由△BDC折疊得到,
∴∠DBC=∠DBE,
∵AD∥BC,
∴∠DBC=∠BDE,
∴∠DBE=∠BDE,
∴BE=DE
設(shè)AE=x,則DE=AD﹣AE=8﹣x,BE=8﹣x,
在Rt△ABE中,∵AE2+AB2=BE2 ,
∴x2+62=(8﹣x)2 , 解得x= ,
即AE的長(zhǎng)為
【解析】先根據(jù)折疊的性質(zhì)得到∠DBC=∠DBE,再由AD∥BC得到∠DBC=∠BDE,則∠DBE=∠BDE,于是可判斷BE=DE設(shè)AE=x,則DE=BE=8﹣x,然后在Rt△ABE中利用勾股定理得到x2+62=(8﹣x)2 , 再解方程即可

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】求下列代數(shù)式的值

(1)若a=-2b=-3,則代數(shù)式(a+b)2-(a-b)2=___________;

(2)當(dāng)x-y=3時(shí),代數(shù)式2(x-y)2+3x-3y+1=___________.

3)化簡(jiǎn)并求值:已知三個(gè)有理數(shù)的積是負(fù)數(shù),其和為正數(shù);當(dāng)時(shí),求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)P(m+2,m-2)在平面直角坐標(biāo)系的x軸上,則點(diǎn)P的坐標(biāo)為(  )

A. (0,-2) B. (2,0) C. (4,0) D. (0,-4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近兩年,市區(qū)的公共自行車(chē)給市民出行帶來(lái)了極大的方便.圖①是公共自行車(chē)的實(shí)物圖,圖②是公共自行車(chē)的車(chē)架示意圖,點(diǎn)A、D、C、E在同一條直線上,CD=30cm,DF=20cm,AF=25cm,FDAE于點(diǎn)D,座桿CE=15cm,且∠EAB=75°.

(1)求AD的長(zhǎng);

(2)求點(diǎn)EAB的距離.(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】無(wú)論m取什么實(shí)數(shù),點(diǎn)A(m+1,2m﹣2)都在直線l上.若點(diǎn)B(a,b)是直線l上的動(dòng)點(diǎn),則(2a﹣b﹣6)3的值等于____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一組數(shù)據(jù)2、-1、0、2、-1、a的眾數(shù)為a,則這組數(shù)據(jù)的平均數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程(x-3)(x-2)-p2=0.

(1)求證:無(wú)論p取何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)設(shè)方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實(shí)數(shù)p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】6xx,則下列不等式一定成立的是( 。

A.x≥2B.x3C.x≥4D.x≤3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使BOC=120°,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O,一邊OM在射線OB另一邊ON在直線AB的下方

1如圖2,將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)使邊OMBOC的內(nèi)部,OM恰好平分BOC此時(shí)AOM=_______;

2如圖3,繼續(xù)將圖2中的三角板繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn),使得ONAOC的內(nèi)部.探究AOMNOC之間數(shù)量關(guān)系,并說(shuō)明你的理由;

3將圖1中的三角板繞點(diǎn)O以每秒10°的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中若直線ON恰好平分AOC,則此時(shí)三角板繞點(diǎn)O旋轉(zhuǎn)的時(shí)間是多少秒?直接寫(xiě)出答案即可,不必說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案