【題目】如圖,將線段AB繞點O順時針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對應(yīng)點A′的坐標(biāo)是

【答案】(5,2).

【解析】

試題分析:線段AB繞點O順時針旋轉(zhuǎn)90°得到線段A′B′,∴△ABO≌△A′B′O′,AOA′=90°,AO=A′O.作ACy軸于C,A′C′x軸于C′,∴∠ACO=A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣COA′=COC′﹣COA′,∴∠AOC=A′OC′.在ACO和A′C′O中,∵∠ACO=ACO,AOC=AOC,AO=AO,∴△ACO≌△A′C′O(AAS),AC=A′C′,CO=C′O.A(﹣2,5),AC=2,CO=5,A′C′=2,OC′=5,A′(5,2).故答案為:(5,2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F(xiàn)為垂足,則下列四個結(jié)論:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正確的有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】動點A從原點出發(fā)向數(shù)軸負(fù)方向運動,同時,動點B也從原點出發(fā)向數(shù)軸正方向運動,3秒后,兩點相距15個單位長度.已知動點A、B的速度比是1:4.(速度單位:單位長度/秒)
(1)求出兩個動點運動的速度;
(2)若A、B兩點從(1)中的位置同時向數(shù)軸負(fù)方向運動,幾秒后原點恰好處在兩個動點正中間;
(3)在(2)中A、B兩點繼續(xù)同時向數(shù)軸負(fù)方向運動時,另一動點C同時從B點位置出發(fā)向A運動,當(dāng)遇到A后,立即返回向B點運動,遇到B點后立即返回向A點運動,如此往返,直到B追上A時,C立即停止運動.若點C一直以20單位長度/秒的速度勻速運動,那么點C從開始到停止運動,運動的路程是多少單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上到-1點的距離等于1個單位的點所表示的數(shù)是

A. 0 B. -1 C. 1-2 D. 0-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC≌△ADE,其中B與D,C與E對應(yīng),

(1)寫出對應(yīng)邊和對應(yīng)角.
(2)∠BAD與∠CAE相等嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩同學(xué)的家與學(xué)校的距離均為3000米.甲同學(xué)先步行600米,然后乘公交車去學(xué)校、乙同學(xué)騎自行車去學(xué)校.已知甲步行速度是乙騎自行車速度的 ,公交車的速度是乙騎自行車速度的2倍.甲乙兩同學(xué)同時從家發(fā)去學(xué)校,結(jié)果甲同學(xué)比乙同學(xué)早到2分鐘.
(1)求乙騎自行車的速度;
(2)當(dāng)甲到達(dá)學(xué)校時,乙同學(xué)離學(xué)校還有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)(-12)-5+(-14)-(-39)
(2)
(3)-22
(4) ×(-15)(用簡便方法計算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,點E是AD的中點,且AE=1,BE的垂直平分線MN恰好過點C.則矩形的一邊AB的長度為(
A.1
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象,如圖所示

(1)根據(jù)方程的根與函數(shù)圖象之間的關(guān)系,將方程的根在圖上近似地表示出來(描點),并觀察圖象,寫出方程的根(精確到0.1).

(2)在同一直角坐標(biāo)系中畫出一次函數(shù)的圖象,觀察圖象寫出自變量x取值在什么范圍時,一次函數(shù)的值小于二次函數(shù)的值.

(3)如圖,點P是坐標(biāo)平面上的一點,并在網(wǎng)格的格點上,請選擇一種適當(dāng)?shù)钠揭品椒,使平移后二次函?shù)圖象的頂點落在P點上,寫出平移后二次函數(shù)圖象的函數(shù)表達(dá)式,并判斷點P是否在函數(shù)的圖象上,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案