【題目】如圖,將矩形紙片ABCD(圖1)按如下步驟操作:(1)以過點A的直線為折痕

折疊紙片,使點B恰好落在AD邊上,折痕與BC邊交于點E(如圖2);(2)以過點E

直線為折痕折疊紙片,使點A落在BC邊上,折痕EFAD邊于點F(如圖3);(3)將紙

片收展平,那么∠AFE的度數(shù)為 ( )

A. 60° B. 67.5° C. 72° D. 75°

【答案】B

【解析】

折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),可利用角度的關(guān)系求解.

解:第一次折疊后,∠EAD=45°,∠AEC=135°

第二次折疊后,∠AEF=67.5°,∠FAE=45°;

故由三角形內(nèi)角和定理知,∠AFE=67.5度.

故選B

本題考查圖形的折疊變化及三角形的內(nèi)角和定理.

關(guān)鍵是要理解折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,只是位置變化.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在三角形ABC中,點E,F(xiàn)分別為線段AB,AC上任意兩點,EG交BC于點G,交AC的延長線于點H,∠1+∠AFE=180°.

(1)證明:BC∥EF;

(2)如圖②,若∠2=∠3,∠BEG=∠EDF,證明:DF平分∠AFE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙0的切線,切點為D,AB經(jīng)過圓心O并與圓相交于點E,連接AD.

(1)求證:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的面積為1,則以相鄰兩邊中點連線EF為邊的正方形EFGH的周長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的推理.

如圖,BE平分ABD,DE平分BDC,且α+β=90°,試說明:ABCD.

完成推理過程:

BE平分∠ABD(已知)

∴∠ABD2α(__________)

DE平分∠BDC(已知),

∴∠BDC2β (__________)

∴∠ABD+∠BDC2α2β2(α+∠β)( __________)

∵∠α+∠β90°(已知),

∴∠ABD+∠BDC180°(__________)

ABCD(____________________)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC 中,AD 是高,∠BAD=60°,∠CAD=20°,AE 平分∠BAC,則∠EAD 的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角三角形ABC中,∠BAC=90°,AC=8 cm,AD⊥BC于點D.點P從點A出發(fā),沿A→C方向以 cm/s的速度運動到點C停止.在運動過程中,過點P作PQ∥AB交BC于點Q,以線段PQ為邊作等腰直角三角形PQM,且∠PQM=90°(點M,C位于PQ異側(cè)).設(shè)點P的運動時間為x(s),△PQM與△ADC重疊部分的面積為y(cm2

(1)當點M落在AB上時,求x的值;
(2)當點M落在AD上時,PM與CD之間的數(shù)量關(guān)系是 , 此時x的值是
(3)求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,射線OA的方向是北偏東20,射線OB的方向是北偏西40ODOB的反向延長線,OC是∠AOD的平分線。

1)求∠BOC的度數(shù);

2)求出射線OC的方向。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OPAOB的平分線,PCOA,PDOB,垂足分別是CD,EOP上一點,則下列結(jié)論錯誤的是(  )

A. CEDEB. CPODEPC. CEODEOD. OCOD

查看答案和解析>>

同步練習冊答案