【題目】如圖,線段AB經(jīng)過圓心O,交⊙O于點A、C,點D為⊙O上一點,連結(jié)AD、OD、BD,∠A=∠B30°.

1)求證:BD是⊙O的切線.

2)若OA5,求OA、ODAD圍成的扇形的面積.

【答案】1)見解析;(2OAODAD圍成的扇形的面積為

【解析】

1)求出∠A=∠ADO30°,求出∠DOB60°,求出∠ODB90°,根據(jù)切線的判定推出即可;

2)根據(jù)扇形的面積公式即可求出答案.

解:(1)證明:∵∠ADO=∠BAD30°,

∴∠DOB60°

∵∠ABD30°,

∴∠ODB90°

ODBD

∵點D為⊙O上一點,

BD是⊙O的切線.

2)解:∵∠DOB60°,

∴∠AOD120°.

OA5,

OA、ODAD圍成的扇形的面積為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點E的中點,連接AF交過E的切線于點D,AB的延長線交該切線于點C,若∠C30°,⊙O的半徑是2,則圖形中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點A-30)、B(20)、C(04).

(1)求拋物線的解析式;

(2)y軸上找一點D,使得△BOD與△AOC相似,請直接寫出符合條件的點D的坐標(biāo);

(3)AC與拋物線的對稱軸交于點E,以A為圓心,AE長為半徑作圓,⊙Ay軸的位置關(guān)系如何?請說明理由.

(4)過點E作⊙A的切線EG,交x軸于點G,請求出直線EG的解析式及G點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣3a≠0)與x軸交于點A﹣2,0)、B40)兩點,與y軸交于點C

1)求拋物線的解析式;

2)點PA點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點QB點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達(dá)終點時,另一個點也停止運動,當(dāng)△PBQ存在時,求運動多少秒使△PBQ的面積最大,最大面積是多少?

3)當(dāng)△PBQ的面積最大時,在BC下方的拋物線上存在點K,使SCBKSPBQ=52,求K點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的一條邊AD4,將矩形ABCD折疊,使得頂點B落在邊上的P點處.

1)如圖1,已知折痕與邊BC交于點O,連結(jié)AP、OP、OA.求證:OCP∽△PDA;

2)若OCPPDA的面積比為14,求邊AB的長;

3)如圖2,在(1)(2)的條件下,擦去折痕AO線段OP,連結(jié)BP,動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BNPM,連結(jié)MNPB于點F,作MEBP于點E.試問當(dāng)點M、N在移動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;若不變,求出線段EF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對于點Px,y)和Qx,y′),給出如下定義:如果y′=,那么稱點Q為點P的“伴隨點”.

例如:點(5,6)的“伴隨點”為點(56);點(﹣56)的“伴隨點”為點(﹣5,﹣6).

1)直接寫出點A2,1)的“伴隨點”A′的坐標(biāo).

2)點Bmm+1)在函數(shù)ykx+3的圖象上,若其“伴隨點”B′的縱坐標(biāo)為2,求函數(shù)ykx+3的解析式.

3)點C、D在函數(shù)y=﹣x2+4的圖象上,且點C、D關(guān)于y軸對稱,點D的“伴隨點”為D′.若點C在第一象限,且CDDD′,求此時“伴隨點”D′的橫坐標(biāo).

4)點E在函數(shù)y=﹣x2+n(﹣1x2)的圖象上,若其“伴隨點”E′的縱坐標(biāo)y′的最大值為m1m3),直接寫出實數(shù)n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B. F為圓心,大于 BF的相同長度為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF.若四邊形ABEF的周長為16,C=60°AG=2,則四邊形ABEF的面積是(

A.8B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點,E、F分別是線段BM、CM的中點

(1)求證:ABM≌△DCM

(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;

(3)當(dāng)AD:AB= _時,四邊形MENF是正方形(只寫結(jié)論,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:平行四邊形ABCD中,EAB中點,,連E、FACG,則AGGC=______________;

查看答案和解析>>

同步練習(xí)冊答案