【題目】如圖,已知邊長為2的正三角形ABC頂點(diǎn)A的坐標(biāo)為(0,6),BC的中點(diǎn)D在y軸上,且在點(diǎn)A下方,點(diǎn)E是邊長為2、中心在原點(diǎn)的正六邊形的一個(gè)頂點(diǎn),把這個(gè)正六邊形繞中心旋轉(zhuǎn)一周,在此過程中DE的最小值為( 。
A. 3 B. 4﹣ C. 4 D. 6﹣2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,MP和NQ分別垂直平分AB和AC.
(1)若△APQ的周長為12,求BC的長;
(2)∠BAC=105°,求∠PAQ的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AE⊥BC于點(diǎn)E,∠ADC的平分線交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過點(diǎn)B,交BC于另一點(diǎn)F.
(1)求證:CD與⊙O相切;
(2)若BF=24,OE=5,求tan∠ABC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE=AD,∠ABE=∠ACD,BE與CD相交于O.
(1)如圖1,求證:AB=AC;
(2)如圖2,連接BC、AO,請直接寫出圖2中所有的全等三角形(除△ABE≌△ACD外).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)興趣小組在“用面積驗(yàn)證平方差公式”時(shí),經(jīng)歷了如下的探究過程;
(1)小明的想法是:將邊長為的正方形右下角剪掉一個(gè)邊長為的正方形(如圖1),將剩下部分按照虛線分割成①和②兩部分,并用兩種方式表示這兩部分面積的和,請你按照小明的想法驗(yàn)證平方差公式.
(2)小白的想法是:在邊長為的正方形內(nèi)部任意位置剪掉一個(gè)邊長為的正方形(如圖2),再將剩下部分進(jìn)行適當(dāng)分割,并將分割得到的幾部分面積和用兩種方式表示出來,請你按照小白的想法在圖中用虛線畫出分割線,并驗(yàn)證平方差公式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某天我國一艘海監(jiān)船巡航到A港口正西方的B處時(shí),發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點(diǎn)有一可疑船只正沿CA方向行駛,C點(diǎn)在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時(shí)D點(diǎn)與B點(diǎn)的距離為75海里.
(1)求B點(diǎn)到直線CA的距離;
(2)執(zhí)法船從A到D航行了多少海里?(≈1.414,≈1.732,結(jié)果精確到0.1海里)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,菱形ABCD,AB=4,∠ADC=120o,連接對角線AC、BD交于點(diǎn)O,
(1)如圖2,將△AOD沿DB平移,使點(diǎn)D與點(diǎn)O重合,求平移后的△A′BO與菱形ABCD重合部分的面積.
(2)如圖3,將△A′BO繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)交AB于點(diǎn)E′,交BC于點(diǎn)F,
①求證:BE′+BF=2,
②求出四邊形OE′BF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知,,是坐標(biāo)平面上三點(diǎn).
(1)請畫出關(guān)于原點(diǎn)對稱的.
(2)請寫出點(diǎn)關(guān)于軸對稱的點(diǎn)的坐標(biāo),若將點(diǎn)向上平移個(gè)單位,使其落在內(nèi)部,指出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD內(nèi)接于⊙O,點(diǎn)P是上一點(diǎn),連接PB、PC,若AD=2AB,則cos∠BPC的值為( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com