如圖,⊙0的直徑AB=6cm,P是AB延長線上的一點(diǎn),過點(diǎn)P作⊙0的切線,切點(diǎn)為C,連接AC,BC.
(1)若∠CPA=30°,求PC的長;
(2)探究:當(dāng)點(diǎn)P在AB的延長線上運(yùn)動時,是否總存在∠PCB=∠CAB?若存在,請證明;若不存在,請說明理由.

【答案】分析:(1)連接OC,根據(jù)切線的性質(zhì)可知OC⊥PC,則△OPC為直角三角形,OC=3,可根據(jù)銳角三角函數(shù)的定義求出PC的值;
(2)存在,有切線的性質(zhì)可知∠PCO=∠OCB+∠PCB=90°,再有圓周角定理可得∠ACB=90°,又因?yàn)閳A的半徑相等即可證明∠PCB=∠CAB.
解答:(1)解:連接OC,
∵PC為⊙0的切線,
∴OC⊥PC,∴∠PCO=90°,
又∠CPA=30°,AB=6,
∴在Rt△PCO中,tan∠CPA=,
∴PC=,

(2)存在.
∵PC為⊙O的切線,
∴∠PCO=∠OCB+∠PCB=90°
又∵AB為⊙O的直徑,
∴∠ACB=90°,∠CAB+∠ABC=90°,
∴∠PCB+∠OCB=∠CAB+∠ABC=90°
又∵OB=OC,
∴∠OCB=∠ABC,
∴∠PCB=∠CAB.
點(diǎn)評:此題考查的是直角三角形的性質(zhì)、特殊角的銳角三角函數(shù)以及切線定理,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O的直徑AB與弦CD相交于E,
BC
=
BD
,⊙O的切線BF與弦AD的延長線相交于點(diǎn)F.
(1)求證:CD∥BF.
(2)連接BC,若⊙O的半徑為4,cos∠BCD=
3
4
,求線段AD、CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的直徑AB與弦CD(不是直徑)相交于E,E是CD的中點(diǎn),過點(diǎn)B作BF∥CD交AD的延長線于
點(diǎn)F.
(1)求證:BF是⊙O的切線;
(2)連接BC,若⊙O的半徑為5,∠BCD=38°,求線段BF、BC的長.(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的直徑AB,CD互相垂直,P為  上任意一點(diǎn),連PC,PA,PD,PB,下列結(jié)論:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正確的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•柳州)如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC=
92

(1)求OD、OC的長;
(2)求證:△DOC∽△OBC;
(3)求證:CD是⊙O切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的直徑AB垂直弦CD于P,且P是半徑OB的中點(diǎn),CD=6cm,則直徑AB的長是
4
3
cm
4
3
cm

查看答案和解析>>

同步練習(xí)冊答案