【題目】已知關(guān)于x的一元二次方程x26xa20

1)如果該方程有實數(shù)根,求實數(shù)a的取值范圍;

2如果該方程有兩個相等的實數(shù)根,求出這兩個根.

【答案】(1) ;(2)

【解析】試題分析:1)根據(jù)判別式的意義得到△=-62-4a-2≥0,然后解不等式即可;

2)根據(jù)判別式的意義得到△=-32-42a+1=0,然后解關(guān)于a的方程得到a=5,則原方程變形為x2-4x+4=0,然后利用配方法解此一元二次方程.

(1)根據(jù)題意得=(6)24(2a+1) ≥0,

解得a≤11

(2)根據(jù)題意得△=(6)24(a-2)=0,

解得a=11,

原方程變形為x26x+9=0,

(x3)2=0,

所以x1=x2=2.

點睛:本題考查了一元二次方程ax2+bx+c=0a≠0)的根的判別式=b2﹣4ac:當(dāng)>0時,一元二次方程有兩個不相等的實數(shù)根;當(dāng)=0時,一元二次方程有兩個相等的實數(shù)根;當(dāng)<0時,一元二次方程沒有實數(shù)根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD的外側(cè),作等邊△ADE,則∠BED的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對任意一個三位數(shù)n,如果n滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”.將一個“相異數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三位數(shù),把這三個新三位數(shù)的和與111的商記為F(n).例如n=123,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為213+321+132=666,666÷111=6,所以F(123)=6.
(1)計算:F(243),F(xiàn)(617);
(2)若s,t都是“相異數(shù)”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k= ,當(dāng)F(s)+F(t)=18時,求k的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD與四邊形DEFG都是正方形,設(shè)AB=a,DE=b(a>b).

(1)寫出AG的長度(用含字母a,b的代數(shù)式表示);

(2)觀察圖形,當(dāng)用不同的方法表示圖形中陰影部分的面積時,你能獲得一個因式分解公式,請將這個公式寫出來;

(3)如果正方形ABCD的邊長比正方形DEFG的邊長多16cm,它們的面積相差960cm2,試?yán)茫?/span>2)中的公式,求a,b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圖1中,A1,B1,C1分別是ABC的邊BCCA,AB的中點,在圖2中,A2,B2,C2分別是A1B1C1的邊B1C1,C1A1A1B1的中點,,按此規(guī)律,則第n個圖形中平行四邊形的個數(shù)共有___個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在△ABC中,∠BAC90°,∠ABC45°,ABAC,點D為直線BC上一動點(D不與B,C重合),以AD為邊作正方形ADEF,連接CF

(1)觀察猜想

如圖1,當(dāng)點D在線段BC上時可以證明△ABD≌△ACF,則

①BCCF的位置關(guān)系為: ;

②BC,DCCF之間的數(shù)量關(guān)系為: ;

(2)類比探究

如圖2,當(dāng)點D在線段BC的延長線上時,其他條件不變,(1),結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明;

(3)拓展延伸

如圖3,當(dāng)點D在線段BC的反向延長線上時,且點A,F分別在直線BC的兩側(cè),其他條件不變.

①BC,DC,CF之間的數(shù)量關(guān)系為:

若正方形ADEF的邊長為2,對角線AE,DF相交于點O,連接OC,則OC的長度為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD被直線AE所截,直線AM,ENMN所截.請你從以下三個條件:①ABCD;②AMEN;③∠BAM=∠CEN中選出兩個作為已知條件,另一個作為結(jié)論,得出一個正確的命題.

1)請按照:   ,   ;∴   的形式,寫出所有正確的命題;

2)在(1)所寫的命題中選擇一個加以證明,寫出推理過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛客車從甲地開往乙地,一輛轎車從乙地開往甲地,兩車同時出發(fā),兩車行駛x小時后,記客車離甲地的距離y1千米,轎車離甲地的距離y2千米,y1、y2關(guān)于x的函數(shù)圖象如圖所示:

①根據(jù)圖象直接寫出y1、y2關(guān)于x的函數(shù)關(guān)系式;

②當(dāng)兩車相遇時,求此時客車行駛的時間.

③相遇后,兩車相距200千米時,求客車又行駛的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】其工廠甲.乙兩個部門各有員工人,為了解這兩個部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整.

收集數(shù)據(jù)

從甲、乙兩個部門各隨機(jī)抽取名員工進(jìn)行了生產(chǎn)技能測試,測試成績(百分制)如下:

甲:78 86 74 81 75 76 87 70 75 90

75 79 81 70 74 80 86 69 83 77

乙:93 73 88 81 72 81 94 83 77 83

80 81 70 81 73 78 82 80 70 40

整理、描述數(shù)據(jù)

1)按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

成績?nèi)藬?shù)部門

(說明:成績分及以上為生產(chǎn)技能優(yōu)秀,分為生產(chǎn)技能良好,分為生產(chǎn)技能合格,分以下為生產(chǎn)技能不合格)

2)若按照甲部門的樣本數(shù)據(jù),在列頻數(shù)分布表時,若取組距為,則這小組的頻數(shù)為    ,頻率為    ;

3)若按照乙部門的樣本數(shù)據(jù)畫出扇形統(tǒng)計圖,則表示生產(chǎn)技能優(yōu)秀部分的圓心角是    度;

得出結(jié)論:

4)估計乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為    

5)可以推斷出部門員工的生產(chǎn)技能水平較高,你的理由為    (說出一條即可)

查看答案和解析>>

同步練習(xí)冊答案