【題目】如圖, 在平面直角坐標(biāo)系xOy中,三角形ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為(-2,-2),(3,1),(0,2),若把三角形ABC向上平移 3 個(gè)單位長度,再向左平移 個(gè)單位長度得到三角形 ,點(diǎn)A,BC的對應(yīng)點(diǎn)分別為 ,,.

(1)寫出點(diǎn) , 的坐標(biāo);

(2)在圖中畫出平移后的三角形 ;

(3)三角形 的面積為__________

【答案】(1)點(diǎn)A′的坐標(biāo)為(-3,01)、點(diǎn)B′的坐標(biāo)為(2,4),點(diǎn)C′的坐標(biāo)為(-1,5);(2)作圖見解析;(3)7.

【解析】(1)根據(jù)橫坐標(biāo),右移加,左移減;縱坐標(biāo),上移加,下移減即可得;

(2)順次連接,,即可得三角形;

(3)利用割補(bǔ)法,用長方形的面積減去外三個(gè)三角形的面積可得.

1)∵點(diǎn)A的坐標(biāo)為(-2,-2)、點(diǎn)B的坐標(biāo)為(3,1),點(diǎn)C的坐標(biāo)為(0,2),

∴向上平移3個(gè)單位長度,再向左平移1個(gè)單位長度后點(diǎn)的坐標(biāo)為(-3,01)、點(diǎn)的坐標(biāo)為(2,4),點(diǎn)的坐標(biāo)為(-1,5);

(2)平移后的圖形如圖所示.

(3)三角形的面積=5×47.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)完二次根式一章后,小易同學(xué)看到這樣一題:“函數(shù)中,自變量的取值范圍是什么?”這個(gè)問題很簡單,根據(jù)二次根式的性質(zhì)很容易得到自變量的取值范圍.聯(lián)想到一次函數(shù),小易想進(jìn)一步研究這個(gè)函數(shù)的圖象和性質(zhì).以下是他的研究步驟:

第一步:函數(shù)中,自變量的取值范圍是_____________.

第二步:根據(jù)自變量取值范圍列表:

-1

0

1

2

3

4

0

1

2

__________.

第三步:描點(diǎn)畫出函數(shù)圖象.

在描點(diǎn)的時(shí)候,遇到了,這樣的點(diǎn),小易同學(xué)用所學(xué)勾股定理的知識(shí),找到了畫圖方法,如圖所示:

你能否從中得到啟發(fā),在下面的軸上標(biāo)出表示 、、的點(diǎn),并畫出的函數(shù)圖象.

第四步:分析函數(shù)的性質(zhì).

請寫出你發(fā)現(xiàn)的函數(shù)的性質(zhì)(至少寫兩條):

____________________________________________________________________________________________

____________________________________________________________________________________________

第五步:利用函數(shù)圖象解含二次根式的方程和不等式.

1)請?jiān)谏厦孀鴺?biāo)系中畫出的圖象,并估算方程的解.

2)不等式的解是__________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)10×10網(wǎng)格,每個(gè)小正方形的邊長均為1,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),△ABC的頂點(diǎn)均在格點(diǎn)上.

(1)畫出△ABC關(guān)于直線l的對稱的△A1B1C1

(2)畫出△ABC關(guān)于點(diǎn)P的中心對稱圖形△A2B2C2

(3)△A1B1C1與△A2B2C2組成的圖形_______________(是或否)軸對稱圖形,如果是軸對稱圖形,請畫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,△ADF按順時(shí)針方向旋轉(zhuǎn)一定角度后得到△ABE,

AF=4,AB=7.

(1)旋轉(zhuǎn)中心為______;旋轉(zhuǎn)角度為______;

(2)DE的長度為______;

(3)指出BEDF的位置關(guān)系如何?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BEAD于點(diǎn)F,AB=6cm,AD=8cm.

1)求證:BDF是等腰三角形;

2)如圖2,過點(diǎn)DDGBE,交BC于點(diǎn)G,連結(jié)FGBD于點(diǎn)O.判斷四邊形FBGD的形狀,并說明理由.

3)在(2)的條件下,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙內(nèi)將ABC經(jīng)過一次平移后得到A′B′C′,圖中標(biāo)出了點(diǎn)C的對應(yīng)點(diǎn)C′.(利用網(wǎng)格點(diǎn)和三角板畫圖)

(1)畫出平移后的A′B′C′.

(2)畫出AB邊上的中線線CD

(3)在整個(gè)平移過程中,線段BC掃過的面積是___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖矩形ABCD中,AB=3cm,AD=9cm,將此矩形折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF.

(1)求證:BE=BF;

(2)求ABE的面積;

(3)求折痕EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,如圖∠BAC90°,BD平分∠ABC,點(diǎn)EBC上,DEAB,點(diǎn)FBC上,連結(jié)AF,∠C36°.

1)求∠BDE的度數(shù);

2)若∠BAF∶∠CAF23,求證:AFBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=8厘米,BC=6厘米,PQ是△ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿AB方向運(yùn)動(dòng)速度為1厘米/秒,點(diǎn)Q從點(diǎn)B開始沿BCA方向運(yùn)動(dòng)速度為2厘米/秒,若它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.

1)求出發(fā)2秒后,PQ的長;

2)點(diǎn)QCA邊上運(yùn)動(dòng)時(shí),當(dāng)△BCQ成為等腰三角形時(shí),求點(diǎn)Q的運(yùn)動(dòng)時(shí)間.

查看答案和解析>>

同步練習(xí)冊答案