【題目】新冠疫情期間,某校開展線上教學,有“錄播”和“直播”兩種教學方式供學生選擇其中一種.為分析該校學生線上學習情況,在接受這兩種教學方式的學生中各隨機抽取40人調(diào)查學習參與度,數(shù)據(jù)整理結(jié)果如表(數(shù)據(jù)分組包含左端值不包含右端值).
參與度 人數(shù) 方式 | 0.2~0.4 | 0.4~0.6 | 0.6~0.8 | 0.8~1 |
錄播 | 4 | 16 | 12 | 8 |
直播 | 2 | 10 | 16 | 12 |
(1)你認為哪種教學方式學生的參與度更高?簡要說明理由.
(2)從教學方式為“直播”的學生中任意抽取一位學生,估計該學生的參與度在0.8及以上的概率是多少?
(3)該校共有800名學生,選擇“錄播”和“直播”的人數(shù)之比為1:3,估計參與度在0.4以下的共有多少人?
【答案】(1)“直播”教學方式學生的參與度更高,理由見解析;(2)30%;(3)50人
【解析】
(1)根據(jù)表格數(shù)據(jù)得出兩種教學方式參與度在0.6以上的人數(shù),比較即可作出判斷;
(2)用表格中“直播”教學方式學生參與度在0.8以上的人數(shù)除以被調(diào)查的總?cè)藬?shù)即可估計對應(yīng)概率;
(3)先根據(jù)“錄播”和“直播”的人數(shù)之比為1:3及該校學生總?cè)藬?shù)求出“直播”、“錄播”人數(shù),再分別乘以兩種教學方式中參與度在0.4以下人數(shù)所占比例求出對應(yīng)人數(shù),再相加即可得出答案.
解:(1)“直播”教學方式學生的參與度更高:
理由:“直播”參與度在0.6以上的人數(shù)為28人,“錄播”參與度在0.6以上的人數(shù)為20人,參與度在0.6以上的“直播”人數(shù)遠多于“錄播”人數(shù),
∴“直播”教學方式學生的參與度更高;
(2)12÷40=0.3=30%,
答:估計該學生的參與度在0.8及以上的概率是30%;
(3)“錄播”總學生數(shù)為800×=200(人),
“直播”總學生數(shù)為800×=600(人),
∴“錄播”參與度在0.4以下的學生數(shù)為200×=20(人),
“直播”參與度在0.4以下的學生數(shù)為600×=30(人),
∴參與度在0.4以下的學生共有20+30=50(人).
科目:初中數(shù)學 來源: 題型:
【題目】國慶70華誕期間,各超市購物市民絡(luò)繹不絕,呈現(xiàn)濃濃節(jié)日氣氛.“百姓超市”用320元購進一批葡萄,上市后很快脫銷,該超市又用680元購進第二批葡萄,所購數(shù)量是第一批購進數(shù)量的2倍,但進價每市斤多了0.2元.
(1)該超市第一批購進這種葡萄多少市斤?
(2)如果這兩次購進的葡萄售價相同,且全部售完后總利潤不低于,那么每市斤葡萄的售價應(yīng)該至少定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】金秋時節(jié),碩果飄香,某精準扶貧項目果園上市一種有機生態(tài)水果.為幫助果園拓寬銷路,欣欣超市對這種水果進行代銷,進價為5元/千克,售價為6元/千克時,當天的銷售量為100千克;在銷售過程中發(fā)現(xiàn):銷售單價每上漲0.5元,當天的銷售量就減少5千克.設(shè)當天銷售單價統(tǒng)一為x元/千克(x≥6,且x是按0.5元的倍數(shù)上漲),當天銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(2)要使當天銷售利潤不低于240元,求當天銷售單價所在的范圍;
(3)若該種水果每千克的利潤不超過80%,要想當天獲得利潤最大,每千克售價為多少元?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE、BF,交點為G.
(1)求證:AE⊥BF;
(2)將△BCF沿BF對折,得到△BPF(如圖2),延長FP交BA的延長線于點Q,求sin∠BQP的值;
(3)將△ABE繞點A逆時針方向旋轉(zhuǎn),使邊AB正好落在AE上,得到△AHM(如圖3),若AM和BF相交于點N,當正方形ABCD的邊長為4時,直接寫出四邊形GHMN的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一張寬為1cm的長方形紙片ABCD折疊成如圖所示的陰影圖案,頂點A,D互相重合,中間空白部分是以E為直角頂點,腰長為2cm的等腰直角三角形,則紙片的長AD(單位:cm)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,連接AC,O是AC的中點,M是AD上一點,且MD=1,P是BC上一動點,則PM﹣PO的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點,,且點B在雙曲線上,在AB的延長線上取一點C,過點C的直線交雙曲線于點D,交x軸正半軸于點E,且,則線段CE長度的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,A(0,8),B(4,0),直線y=﹣x沿x軸作平移運動,平移時交OA于D,交OB于C.
(1)當直線y=﹣x從點O出發(fā)以1單位長度/s的速度勻速沿x軸正方向平移,平移到達點B時結(jié)束運動,過點D作DE⊥y軸交AB于點E,連接CE,設(shè)運動時間為t(s).
①是否存在t值,使得△CDE是以CD為腰的等腰三角形?如果能,請直接寫出相應(yīng)的t值;如果不能,請說明理由.
②將△CDE沿DE翻折后得到△FDE,設(shè)△EDF與△ADE重疊部分的面積為y(單位長度的平方).求y關(guān)于t的函數(shù)關(guān)系式及相應(yīng)的t的取值范圍;
(2)若點M是AB的中點,將MC繞點M順時針旋轉(zhuǎn)90°得到MN,連接AN,請直接寫出AN+MN的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,∠ABC=135°,AB=a,BC=b,點P是邊AC上任意一點,連結(jié)BP,將△CPB沿PB翻折,得△C'PB.
(1)若a=,b=6,∠C'PC=90°,求CP的長;
(2)連結(jié)AC',當以A、B、P、C'為頂點的四邊形是平行四邊形時,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com