【題目】等腰三角形的一個外角是140° ,則其底角是
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某城市大劇院地面的一部分為扇形,觀眾席的座位按下列方式設(shè)置:
按這種方式排下去:
(1)第5、6排各有多少個座位?
(2)第n排有多少個座位?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC與BD相交于點O,AB=8,∠BAD=60°,點E從點A出發(fā),沿AB以每秒2個單位長度的速度向終點B運(yùn)動,當(dāng)點E不與點A重合時,過點E作EF⊥AD于點F,作EG∥AD交AC于點G,過點G作GH⊥AD交AD(或AD的延長線)于點H,得到矩形EFHG,設(shè)點E運(yùn)動的時間為t秒
(1)求線段EF的長(用含t的代數(shù)式表示);
(2)求點H與點D重合時t的值;
(3)設(shè)矩形EFHG與菱形ABCD重疊部分圖形的面積與S平方單位,求S與t之間的函數(shù)關(guān)系式;
(4)矩形EFHG的對角線EH與FG相交于點O′,當(dāng)OO′∥AD時,t的值為 ;當(dāng)OO′⊥AD時,t的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=3,M是邊CD上一點,將△ADM沿直線AM對折,得到△ANM.
(1)當(dāng)AN平分∠MAB時,求DM的長;
(2)連接BN,當(dāng)DM=1時,求△ABN的面積;
(3)當(dāng)射線BN交線段CD于點F時,求DF的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果代數(shù)式4x2+kx+25能夠分解成(2x﹣5)2的形式,那么k的值是( )
A.10B.﹣20C.±10D.±20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于點O,點D、E分別在邊AC、BC上,且AD=CE,連結(jié)DE交CO于點P,給出以下結(jié)論:
①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,則四邊形CEOD的面積為;④,其中所有正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點P是BA延長線上一點,PC是⊙O的切線,切點為C,過點B作BD⊥PC交PC的延長線于點D,連接BC.求證:
(1)∠PBC=∠CBD;
(2)=ABBD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB∥DC,AC和BD相交于點O,E是CD上一點,F是OD上一點,且∠1=∠A.
(1)求證:FE∥OC;(2)若∠B=40°,∠1=60°,求∠OFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,點D在邊BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圓.
(1)求證:AC是⊙O的切線;
(2)當(dāng)BD是⊙O的直徑時(如圖2),求∠CAD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com