【題目】在平面直角坐標(biāo)系中,A(3,0)、B(a,2)、C(0,m),D(n,0),且m2+n2=4,若E為CD中點(diǎn).則AB+BE的最小值為( 。
A. 3 B. 4 C. 5 D. 2
【答案】B
【解析】
由m2+n2=4,可知CD=2,OE=1,即點(diǎn)E在以點(diǎn)O為圓心,以1為半徑的圓上;作點(diǎn)A關(guān)于直線y=2的對稱點(diǎn)A′,連接A′O,交直線y=2于點(diǎn)B,交圓于點(diǎn)E,由軸對稱的性質(zhì)知此時(shí)AB+BE的值最。蝗缓笥晒垂啥ɡ砬蟪OA′的長,從而可求出EA′的長,即AB+BE的值最小值.
∵m2+n2=4,
∴CD=2,OE=1,
即點(diǎn)E在以點(diǎn)O為圓心,以1為半徑的圓上;
作點(diǎn)A關(guān)于直線y=2的對稱點(diǎn)A′,連接A′O,交直線y=2于點(diǎn)B,交圓于點(diǎn)E,由軸對稱的性質(zhì)知此時(shí)AB+BE的值最;
由勾股定理得,
,
∴EA′=5-1=4,
∴AB+BE=4.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗和小華想利用摸球游戲決定誰去參加市里舉辦的書法比賽,游戲規(guī)則是:在一個(gè)不透明的袋子里裝有除數(shù)字外完全相同的4個(gè)小球,上面分別標(biāo)有數(shù)字2,3,4,5.一人先從袋中隨機(jī)摸出一個(gè)小球,另一人再從袋中剩下的3個(gè)小球中隨機(jī)摸出一個(gè)小球.若摸出的兩個(gè)小球上的數(shù)字和為偶數(shù),則小麗去參賽;否則小華去參賽.
(1)用列表法或畫樹狀圖法,求小麗參賽的概率.
(2)你認(rèn)為這個(gè)游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=x+1交x軸于點(diǎn)B,交y軸于點(diǎn)A,過點(diǎn)A作AB1⊥AB交x軸于點(diǎn)B1,過點(diǎn)B1作B1A1⊥x軸交直線l于點(diǎn)A2…依次作下去,則點(diǎn)Bn的橫坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F分別是AD和AD延長線上的點(diǎn),且DE=DF,連接BF,CE.下列說法:①△BDF≌△CDE;②CE=BF; ③BF∥CE;④△ABD和△ACD周長相等.其中正確的有___________(只填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分線交BC于點(diǎn)D,垂足為E,若DE=2cm,則BD的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有10個(gè)數(shù)據(jù)x1,x2,…x10,已知它們的和為2018,當(dāng)代數(shù)式(x﹣x1)2+(x﹣x2)2+…+(x﹣x10)2取得最小值時(shí),x的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣9ax+18a的圖象與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),圖象的頂點(diǎn)為C,直線AC交y軸于點(diǎn)D.
(1)連接BD,若∠BDO=∠CAB,求這個(gè)二次函數(shù)的表達(dá)式;
(2)是否存在以原點(diǎn)O為對稱軸的矩形CDEF?若存在,求出這個(gè)二次函數(shù)的表達(dá)式,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線:與直線:交于點(diǎn),則______.
【答案】-1
【解析】
將點(diǎn)A的坐標(biāo)代入兩直線解析式得出關(guān)于m和b的方程組,解之可得.
解:由題意知,
解得,
故答案為:.
【點(diǎn)睛】
本題主要考查兩直線相交或平行問題,解題的關(guān)鍵是掌握兩直線的交點(diǎn)坐標(biāo)必定同時(shí)滿足兩個(gè)直線解析式.
【題型】填空題
【結(jié)束】
11
【題目】如圖,長方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點(diǎn)B落在點(diǎn)E處,CE交AD于點(diǎn)F,則△AFC的面積等于___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)求證:2CD2=AD2+DB2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com