【題目】如圖,已知在正方形ABCD,FCD邊上一點(diǎn)(不與CD重合),過(guò)點(diǎn)DDGBFBF延長(zhǎng)線于點(diǎn)G連接AG,BD于點(diǎn)E,CD于點(diǎn)M,連接EFDG=4AG=,EF的長(zhǎng)為____________

【答案】

【解析】試題分析:

如圖作AHBGHBCT,ANGDN,取BD的中點(diǎn)O,連接OA、OG

∴∠BAD=∠BGD=90°,

OAODOBOG,

A、B、G、D四點(diǎn)共圓,

∴∠AGB=∠ADB=45°,∠AGD=∠ABD=45°,

AHGH,ANNG,

∵∠N=∠AHG=∠HGN=90°,

∴四邊形ANGH是矩形,∵AHHG,

∴四邊形ANGH是正方形,

AG

AHHGGNAN=5,

易證△AND≌△AHB,

DNBH,

GDGBGNDNGHBH=2GN=10,

∴4+GB=10,

GB6,BD

BH=1,

∵△BHT∽△AHB,

BH2AHHT,

HT

ATAHTH,

易證△ABT≌△BCF

ATBF,

∵△BEF∽△BGD

,

,

EF

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,將直角三角形的直角頂點(diǎn)放在點(diǎn)處,兩直角邊與坐標(biāo)軸交于如圖所示的點(diǎn)和點(diǎn),則的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩張完全相同的長(zhǎng)方形紙片(長(zhǎng)為12,寬為4)如圖疊放在一起,重疊部分為四邊形ABCD,則四邊形ABCD的周長(zhǎng)最大值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC=5,AB邊上的高CD=4,點(diǎn)P從點(diǎn)A出發(fā),沿AB以每秒3個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)P不與點(diǎn)A、B重合時(shí),過(guò)點(diǎn)PPQAB,交邊AC或邊BC于點(diǎn)Q,以PQ為邊向右側(cè)作正方形PQMN.設(shè)正方形PQMNABC重疊部分圖形的面積為S(平方單位),點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(秒).

1)直接寫出tanB的值為   

2)求點(diǎn)M落在邊BC上時(shí)t的值.

3)當(dāng)正方形PQMNABC重疊部分為四邊形時(shí),求St之間的函數(shù)關(guān)系式.

4)邊BC將正方形PQMN的面積分為13兩部分時(shí),直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以ABCD 的四條邊為邊,分別向外作正方形,連結(jié) EF,GH,IJ,KL.如果ABCD 面積為 8,則圖中陰影部分四個(gè)三角形的面積和為(

A.8B.12C.16D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著網(wǎng)絡(luò)的發(fā)展,我們的生活越來(lái)越方便,越來(lái)越多的人在網(wǎng)絡(luò)上購(gòu)物微商這個(gè)行業(yè)也悄然興起,很多人通過(guò)微信平臺(tái)銷售商品

1)某水果微商今年九月購(gòu)進(jìn)榴蓮和奇異果共1000千克它們的進(jìn)價(jià)均為每千克24 ,然后以榴蓮售價(jià)每千克45,奇異果售價(jià)每千克36元的價(jià)格很快銷售完,若該水果微商九月獲利不低于17400,求應(yīng)購(gòu)進(jìn)榴蓮至少多少千克?

2)為了增加銷售量,獲得更大的利潤(rùn),在進(jìn)價(jià)不變的情況下該水果微商十月決定調(diào)整售價(jià),榴蓮的售價(jià)在九月的基礎(chǔ)上下調(diào)(降價(jià)后的售價(jià)不低于進(jìn)價(jià)),奇異果的售價(jià)在九月的基礎(chǔ)上上漲同時(shí),與(1)中獲得的最低利潤(rùn)時(shí)的銷售量相比,榴蓮的銷售量下降了而奇異果的銷售量上升了,結(jié)果十月的銷售額比九月增加了600元.求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交ABAC于點(diǎn)MN,再分別以MN為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D. 下列結(jié)論:AD是∠BAC的平分線;②點(diǎn)DAB的垂直平分線上;③∠ADC=60°;④。其中正確的結(jié)論有(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在東營(yíng)市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購(gòu)進(jìn)一批電腦和電子白板,經(jīng)過(guò)市場(chǎng)考察得知,購(gòu)買1臺(tái)電腦和2臺(tái)電子白板需要3.5萬(wàn)元,購(gòu)買2臺(tái)電腦和1臺(tái)電子白板需要2.5萬(wàn)元.

1)求每臺(tái)電腦、每臺(tái)電子白板各多少萬(wàn)元?

2)根據(jù)學(xué)校實(shí)際,需購(gòu)進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過(guò)30萬(wàn)元,但不低于28萬(wàn)元,請(qǐng)你通過(guò)計(jì)算求出有幾種購(gòu)買方案,哪種方案費(fèi)用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、B兩地相距4800米,甲從A地出發(fā)步行到B地,20分鐘后乙從B地出發(fā)騎自行車到A地,設(shè)甲步行的時(shí)間為x分鐘,甲、乙兩人離A地的距離分別為米、米,、x的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖象解答下列問(wèn)題:

1直接寫出y、yx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

2)求甲出發(fā)后多少分鐘兩人相遇,相遇時(shí)乙離A地多少米?

查看答案和解析>>

同步練習(xí)冊(cè)答案