(6分)如圖,在△ABC中,∠A=90°,∠B=60°,AB=3,點(diǎn)D從點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng)(點(diǎn)D不與B重合),過(guò)點(diǎn)D作DE∥BC交AC于點(diǎn)E.以DE為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形ADFE,設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為秒.

(1)用含的代數(shù)式表示△DEF的面積S;
(2)當(dāng)為何值時(shí),⊙O與直線(xiàn)BC相切?
解:(1)∵DE∥BC,∴∠ADE=∠B=60°

在△ADE中,∵∠A=90°

∵AD=,∴AE=……………………2分
又∵四邊形ADFE是矩形,
∴SDEF=SADE=
∴S=………………3分
(2)過(guò)點(diǎn)O作OG⊥BC于G,過(guò)點(diǎn)D作DH⊥BC于H,
∵DE∥BC,∴OG=DH,∠DHB=90°
在△DBH中,
∵∠B=60°,BD=,AD=,AB=3,
∴DH=,∴OG=……………………4分
當(dāng)OG=時(shí),⊙O與BC相切,
在△ADE中,∵∠A=90°,∠ADE=60°,∴
∵AD=,∴DE=2AD=,
,

∴當(dāng)時(shí),⊙O與直線(xiàn)BC相切……………………6分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖2,點(diǎn)P(3a,a)是反比例函y=(k>0)與⊙O的一個(gè)交點(diǎn),圖中陰影部分的面積為10π,則反比例函數(shù)的解析式為
A.y=B.y=C.y=D.y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如果圓錐的底面周長(zhǎng)是20π,側(cè)面展開(kāi)后所得的扇形的圓心角為120°.則圓錐的母線(xiàn)是________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2011•舟山)如圖,半徑為10的⊙O中,弦AB的長(zhǎng)為16,則這條弦的弦心距為(  )
A.6B.8
C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2011•臨沂)如圖是一圓錐的主視圖,則此圓錐的側(cè)面展開(kāi)圖的圓心角的度數(shù)是(  )
A.60°B.90°
C.120°D.180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2011山東煙臺(tái),12,4分)如圖,六邊形ABCDEF是正六邊形,曲線(xiàn)FK1K2K3K4K5K6K7……叫做“正六邊形的漸開(kāi)線(xiàn)”,其中,,,,,……的圓心依次按點(diǎn)AB,CD,E,F循環(huán),其弧長(zhǎng)分別記為l1l2,l3,l4,l5l6,…….當(dāng)AB=1時(shí),l2 011等于(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知圓柱的底面半徑為2cm,高為5cm,則圓柱的側(cè)面積是           (    )
A.20 cm2    8.20兀cm2    C.10兀cm2    D.5兀cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知點(diǎn)C在⊙O上,延長(zhǎng)直徑AB到點(diǎn)P,連接PC,∠COB=2∠PCB

(1)求證:PC是⊙O的切線(xiàn);
(2)若AC=PC,且PB=3,M是⊙O下半圓弧的中點(diǎn),求MA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

閱讀材料:如圖23—1,的周長(zhǎng)為,面積為S,內(nèi)切圓的半徑為,探究與S、之間的關(guān)系.連結(jié),,


,


解決問(wèn)題

(1)利用探究的結(jié)論,計(jì)算邊長(zhǎng)分別為5,12,13的三角形內(nèi)切圓半徑;
(2)若四邊形存在內(nèi)切圓(與各邊都相切的圓),如圖23—2且面積為,各邊長(zhǎng)分別為,,,試推導(dǎo)四邊形的內(nèi)切圓半徑公式;
(3)若一個(gè)邊形(為不小于3的整數(shù))存在內(nèi)切圓,且面積為,各邊長(zhǎng)分別為,,,,合理猜想其內(nèi)切圓半徑公式(不需說(shuō)明理由).

查看答案和解析>>

同步練習(xí)冊(cè)答案