20.小華想了解貴陽(yáng)市的氣溫情況,他把所調(diào)查的7天的氣溫制作了如下表格:
 平均數(shù) 中位數(shù) 眾數(shù) 方差
 20.9℃ 21.5℃ 22℃ 8.3
對(duì)這7天氣溫情況,去掉一個(gè)最高溫度和一個(gè)最低溫度,表格中的統(tǒng)計(jì)量一定不發(fā)生變化的是中位數(shù).

分析 根據(jù)中位數(shù)的定義:位于中間位置或中間兩數(shù)的平均數(shù)可以得到去掉一個(gè)最高分和一個(gè)最低分不影響中位數(shù).

解答 解:去掉一個(gè)最高分和一個(gè)最低分對(duì)中位數(shù)沒(méi)有影響,
故答案為中位數(shù).

點(diǎn)評(píng) 本題考查了統(tǒng)計(jì)量的選擇,解題的關(guān)鍵是了解中位數(shù)的定義,難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.將等寬的直條型紙片按照如圖中的方式進(jìn)行折疊,若∠1=58°,則∠2=64°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列四個(gè)漢字中,可以看作是軸對(duì)稱(chēng)圖形的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知A,B兩地相距1100米,甲從A地出發(fā),乙從B地出發(fā),相向而行,甲比乙先出發(fā)2分鐘,乙出發(fā)7分鐘后與甲相遇.設(shè)甲、乙兩人相距y米,甲行進(jìn)的時(shí)間為t分鐘,y與t之間的函數(shù)關(guān)系如圖所示.請(qǐng)你結(jié)合圖象解答:
(1)求甲的行進(jìn)速度和點(diǎn)M的坐標(biāo);
(2)求直線PQ對(duì)應(yīng)的函數(shù)表達(dá)式;
(3)求乙的行進(jìn)速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.計(jì)算:
(1)$\sqrt{8}$-6$\sqrt{\frac{1}{2}}$+$\sqrt{2}$
(2)(4$\sqrt{2}$-3$\sqrt{6}$)÷$\sqrt{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,拋物線y=$\frac{1}{4}$x2-$\frac{3}{2}$ x-4與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對(duì)稱(chēng)中心作菱形BDEC,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.
(1)求點(diǎn)A,B,C的坐標(biāo).
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),直線l分別交BD于點(diǎn)M,求線段MQ長(zhǎng)度的最大值.
(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使△BDQ為直角三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4)當(dāng)點(diǎn)P在線段EB上運(yùn)動(dòng)時(shí),直線l與菱形BDEC的某一邊交于點(diǎn)S,是否存在 m 值,使得點(diǎn)C、Q、S、D為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫(xiě)出m值,不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列圖形中,既是軸對(duì)稱(chēng)圖形又對(duì)稱(chēng)軸的數(shù)量大于2條的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列等式從左到右的變形,屬于因式分解的是( 。
A.a(x-y)=ax-ayB.x2-9=(x+3)(x-3)C.(x+1)(x+2)=x2+3x+2D.x2+2x+1=x(x+2)+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.先化簡(jiǎn),再求值:(2a2b-2ab2)-(3a2b-3)+2ab2+1,其中a=-$\frac{1}{2}$,b=8.

查看答案和解析>>

同步練習(xí)冊(cè)答案