如圖,在△ABC中,AB=CB,∠ABC=900,D為AB延長線上一點(diǎn),點(diǎn)E在BC邊上,且BE=BD,連結(jié)AE、DE、DC.

①求證:△ABE≌△CBD;

②若∠CAE=300,求∠BDC的度數(shù).

 

【答案】

①見解析②750

【解析】解:①證明:∵∠ABC=900,D為AB延長線上一點(diǎn),∴∠ABE=∠CBD=90°。

在△ABE和△CBD中,∵,

∴△ABE≌△CBD(SAS)。

②∵AB=CB,∠ABC=900,∴∠CAB=450。

∵∠CAE=300,∴∠BAE=∠CAB-∠CAE=45°-300=150

∵△ABE≌△CBD,∴∠BCD=∠BAE=150。

∴∠BDC=900-∠BCD=900-150=750。

①求出∠ABE=∠CBD,然后利用“邊角邊”證明△ABE和△CBD全等即可。

②先根據(jù)等腰直角三角形的銳角都是45°求出∠CAB,再求出∠BAE,然后根據(jù)全等三角形對應(yīng)角相等求出∠BCD,再根據(jù)直角三角形兩銳角互余其解即可。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案