某品牌產(chǎn)品公司獻(xiàn)愛心,捐出了二月份的全部利潤.已知該公司二月份只售出了A、B、C三種型號的產(chǎn)品若干件,每種型號產(chǎn)品不少于4件,二月份支出包括這批產(chǎn)品進(jìn)貨款20萬元和其他各項支出(含人員工資和雜項開支)1.9萬元.這三種產(chǎn)品的售價和進(jìn)價如下表,人員工資y1(萬元)和雜項支出y2(萬元)分別與銷售總量x(件)成一次函數(shù)關(guān)系(如圖).
型號
進(jìn)價(萬元/件)0.50.80.7
售價(萬元/件)0.81.20.9
(1)求y1與x的函數(shù)關(guān)系;
(2)求二月份該公司的總銷售量;
(3)設(shè)公司二月份售出A種產(chǎn)品t件,二月份總銷售利潤為W(萬元),求W與t的函數(shù)關(guān)系式及t的取值范圍;
(4)請求出該公司這次愛心捐款金額的最大值.
(1)設(shè)y1與x的函數(shù)關(guān)系為y1=kx+b,
如圖所示:圖象過(10,0.6),(0,0.1)兩點,代入解析式得:
10k+b=0.6
b=0.1
,
解得:k=0.05,b=0.1,
∴y1與x的函數(shù)關(guān)系為y1=0.05x+0.1;

(2)∵二月份人員工資和雜項開支1.9萬元,
人員工資y1(萬元)和雜項支出y2(萬元)分別與銷售總量x(件)成一次函數(shù)關(guān)系,
∴根據(jù)題意得:y1+y2=0.05x+0.1+0.005x+0.15=1.9,
整理得:0.055x=1.65,
解得:x=30(件);
∴二月份該公司的總銷售量是30件;

(3)∵設(shè)公司二月份售出A種產(chǎn)品t件,售出B種產(chǎn)品x件,售出C種產(chǎn)品(30-t-x)件,
∵二月份該公司的總銷售量是30件;
∴30=0.5t+0.8x+(30-t-x)×0.7,
整理得:x=2t-10,
∴二月份總銷售利潤為:
W=(0.8-0.5)t+(1.2-0.8)(2t-10)+(0.9-0.7)(30-t-2t+10)-1.9,
=0.3t+0.8t-4+8-0.6t-1.9,
=0.5t+2.1,
∴W與t的函數(shù)關(guān)系式為:w=0.5t+2.1,
∵每種型號產(chǎn)品不少于4件,
t的取值范圍是:7≤t≤12;

(4)∵W與t的函數(shù)關(guān)系式為:w=0.5t+2.1,
∴w隨t的增大而增大,當(dāng)t取最大值時,w最大,
∴當(dāng)t=12時,w=0.5×12+2.1=8.1萬元,
該公司這次愛心捐款金額的最大值是8.1萬元.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=-
4x
3
+8與x軸、y軸分別交于A、B兩點,M為OB上一點,若將△ABM沿AM折疊,點B恰好落在x軸上的B′處,則直線AM的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中∠ACB=90°,D是AB的中點,以DC為直徑的⊙O交△ABC的三邊,交點分別是G,F(xiàn),E點.GE,CD的交點為M,且ME=4
6
,MD:CO=2:5.
(1)求證:∠GEF=∠A;
(2)求⊙O的直徑CD的長;
(3)若cos∠B=0.6,以C為坐標(biāo)原點,CA,CB所在的直線分別為X軸和Y軸,建立平面直角坐標(biāo)系,求直線AB的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(-5,y1),(2,y2)都在直線y=-
1
2
x
上,則y1與y2大小關(guān)系是( 。
A.y1≤y2B.y1≥y2C.y1<y2D.y1>y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

直線y=kx+b(k≠0)與坐標(biāo)軸分別交于A、B兩點,OA、OB的長分別是方程x2-14x+48=0的兩根(OA>OB),動點P從O點出發(fā),沿路線O?B?A以每秒1個單位長度的速度運動,到達(dá)A點時運動停止.
(1)直接寫出A、B兩點的坐標(biāo);
(2)設(shè)點P的運動時間為t(秒),△OPA的面積為S,求S與t之間的函數(shù)關(guān)系式(不必寫出自變量的取值范圍);
(3)當(dāng)S=12時,直接寫出點P的坐標(biāo),此時,在坐標(biāo)軸上是否存在點M,使以O(shè)、A、P、M為頂點的四邊形是梯形?若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)系中,直線y=x+1與y=-
3
4
x+3
分別交x軸于點B和點C,點D是直線y=-
3
4
x+3
與y軸的交點.
(1)求點B、C、D的坐標(biāo);
(2)設(shè)M(x,y)是直線y=x+1上一點,△BCM的面積為S,請寫出S與x的函數(shù)關(guān)系式;來探究當(dāng)點M運動到什么位置時,△BCM的面積為10,并說明理由.
(3)線段CD上是否存在點P,使△CBP為等腰三角形,如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長為2cm,在對稱中心O處有一釘子.動點P,Q同時從點A出發(fā),點P沿A?B?C方向以每秒2cm的速度運動,到點C停止,點Q沿A?D方向以每秒1cm的速度運動,到點D停止.P,Q兩點用一條可伸縮的細(xì)橡皮筋連接,設(shè)x秒后橡皮筋掃過的面積為ycm2
(1)當(dāng)0≤x≤1時,求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)橡皮筋剛好觸及釘子時,求x值;
(3)當(dāng)1≤x≤2時,求y與x之間的函數(shù)關(guān)系式,并寫出橡皮筋從觸及釘子到運動停止時∠POQ的變化范圍;
(4)當(dāng)0≤x≤2時,請在給出的直角坐標(biāo)系中畫出y與x之間的函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某航空公司經(jīng)營A、B、C、D四個城市之間的客運業(yè)務(wù).若機票價格y(元)是兩城市間的距離x(千米)的一次函數(shù).今年“五一”期間部分機票價格如下表所示:
起點終點距離x(千米)價格y(元)
AB10002050
AC8001650
AD2550
BC600
CD950
(1)求該公司機票價格y(元)與距離x(千米)的函數(shù)關(guān)系式;
(2)利用(1)中的關(guān)系式將表格填完整;
(3)判斷A、B、C、D這四個城市中,哪三個城市在同一條直線上?請說明理由;
(4)若航空公司準(zhǔn)備從旅游旺季的7月開始增開從B市直接飛到D市的旅游專線,且按以上規(guī)律給機票定價,那么機票定價應(yīng)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一個長方形周長為60米.求它三長y(米)與寬x(米)之間三函數(shù)關(guān)系式,并指出關(guān)系式二三自變量與函數(shù).

查看答案和解析>>

同步練習(xí)冊答案