分析 (1)連接OC,由圓周角定理得出∠ACB=90°,得出∠1+∠2=90°,由等腰三角形的性質(zhì)得出∠PCA=∠2,因此∠1+∠PCA=90°,即PC⊥OC,即可得出結(jié)論;
(2)由切割線定理得出PC2=PA•PB,求出PB,即可得出直徑AB的長.
解答 (1)證明:連接OC,如圖所示:
∵AB是⊙的直徑,
∴∠ACB=90°,
即∠1+∠2=90°,
∵OB=OC,
∴∠2=∠B,
又∵∠PCA=∠B,
∴∠PCA=∠2,
∴∠1+∠PCA=90°,
即PC⊥OC,
∴PC是⊙O的切線;
(2)解:∵PC是⊙O的切線,
∴PC2=PA•PB,
∴62=4×PB,
解得:PB=9,
∴AB=PB-PA=9-4=5.
點(diǎn)評 本題考查了切線的判定與性質(zhì)、等腰三角形的性質(zhì)、圓周角定理、切割線定理;熟練掌握切線的判定方法,由切割線定理求出PB是解決問題(2)的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π | B. | 2 | C. | 4π | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
組別 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
甲 | 6.7 | 6 | 6 | 3.41 | 90% | 20% |
乙 | 7.1 | 7.5 | 8 | 1.69 | 80% | 10% |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②④ | B. | ①②③ | C. | ①② | D. | ②③④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1對 | B. | 2對 | C. | 3對 | D. | 4對 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com