【題目】如圖,點C在⊙O上,AB為直徑,BD與過點C的切線垂直于D,BD與⊙O交于點E.
(1)求證:BC平分∠DBA;
(2)如果cos∠ABD=,OA=2,求DE的長.
【答案】(1)證明見解析;(2)1.
【解析】
(1)如圖1中,連接OC,由CD是⊙O的切線,推出OC⊥CD,由BD⊥CD,推出OC∥BD,推出∠OCB=∠CBD,由OC=OB,推出∠OCB=∠OBC,即可推出∠CBO=∠CBD;
(2)如圖2,連接AC、AE.易知四邊形AEDC是直角梯形,求出CD、AE、BE長,則DE可求出.
(1)證明:如圖1中,連接OC,
∵CD是⊙O的切線,
∴OC⊥CD,∵BD⊥CD,
∴OC∥BD,
∴∠OCB=∠CBD,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠CBO=∠CBD,
∴BC平分∠DBA;
(2)解:如圖連接AC、AE.
∵cos∠ABD=,
∴∠ABD=60°,
由(1)可知,∠ABC=∠CBD=30°,
在Rt△ACB中,∵∠ACB=90°,∠ABC=30°,AB=4,
∴BC=ABcos30°=2,
在Rt△ABE中,∵∠AEB=90°,∠BAE=30°,AB=4,
∴BE=AB=2,AE=2,
在Rt△CDB中,∵∠D=90°,∠CBD=30°,BC=2,
∴CD=BC=,BD=3,
∴DE=DB-BE=3-2=1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東坡商貿(mào)公司購進某種水果的成本為20元/kg,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價p(元/kg)與時間t(天)之間的函數(shù)關(guān)系式為:
,且其日銷售量y(kg)與時間t(天)的關(guān)系如下表:
(1)已知y與t之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求在第30天的日銷售量是多少?
(2)問哪一天的銷售利潤最大?最大日銷售利潤為多少?
(3)在實際銷售的前24天中,公司決定每銷售1kg水果就捐贈n元利潤(n<9)給“精準(zhǔn)扶貧”對象.現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代偉大的數(shù)學(xué)家劉微將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示若a=3,b=4,則該三角形的面積為( 。
A. 10B. 12C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個三角形的構(gòu)造法則:兩腰上的數(shù)都是1,其余每個數(shù)均為其上方左、右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個數(shù)1,2,1,恰好對應(yīng)(a+b)2=a2+2ab+b2展開式中的系數(shù);第四行的四個數(shù)1,3,3,1,恰好對應(yīng)著(a+b)3=a3+3a2b+3ab2+b2展開式中的系數(shù)等.
(1)(a+b)n展開式中項數(shù)共有 項.
(2)寫出(a+b)5的展開式:(a+b)5= .
(3)利用上面的規(guī)律計算:25﹣5×24+10×23﹣10×22+5×2﹣1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】團體購買某公園門票,票價如表,某單位現(xiàn)要組織其市場部和生產(chǎn)部的員工游覽該公園.如果按部門作為團體,選擇兩個不同的時間分別購票游覽公園,則共需支付門票費為1290元;如果兩個部門合在一起作為一個團體,同一時間購票游覽公園,則需支付門票費為990元.那么該公司這兩個部門的人數(shù)之差為( 。
A. 20B. 35C. 30D. 40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的動點P和圖形N,給出如下定義:如果Q為圖形N上一個動點,P,Q兩點間距離的最大值為dmax,P,Q兩點間距離的最小值為dmin,我們把dmax+dmin的值叫點P和圖形N間的“和距離”,記作d(P,圖形N).
(1)如圖1,正方形ABCD的中心為點O,A(3,3).
①點O到線段AB的“和距離”d(O,線段AB)=______;
②設(shè)該正方形與y軸交于點E和F,點P在線段EF上,d(P,正方形ABCD)=7,求點P的坐標(biāo).
(2)如圖2,在(1)的條件下,過C,D兩點作射線CD,連接AC,點M是射線CD上的一個動點,如果6<d(M,線段AC)<6+3,直接寫出M點橫坐標(biāo)t取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里裝有四個分別標(biāo)有1、2、3、4的小球,它們的形狀、大小等完全相同.小黑先從口袋里隨機不放回地取出一個小球,記下數(shù)字為x;小白在剩下有三個小球中隨機取出一個小球,記下數(shù)字y.
(1)計算由x、y確定的點(x,y)在函數(shù)圖象上的概率;
(2)小黑、小白約定做一個游戲,其規(guī)則是:若x、y滿足xy>6,則小黑勝;若x、y滿足xy<6,則小白勝.這個游戲規(guī)則公平嗎?說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠流長;中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團委隨機抽取了其中200名學(xué)生的成績作為樣本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:
頻數(shù)頻率分布表
成績x(分) | 頻數(shù)(人) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
根據(jù)所給信息,解答下列問題:
(1)m= ,n= ;
(2)補全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績的中位數(shù)會落在 分?jǐn)?shù)段;
(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計該校參加本次比賽的3000名學(xué)生中成績是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,O為圓心,AD、BD是半圓的弦,且∠PDA=∠PBD.延長PD交圓的切線BE于點E
(1)證明:直線PD是⊙O的切線.
(2)如果∠BED=60°,,求PA的長.
(3)將線段PD以直線AD為對稱軸作對稱線段DF,點F正好在圓O上,如圖2,求證:四邊形DFBE為菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com