如圖,若六邊形ABCDEF是⊙O的內(nèi)接正六邊形,則∠AED=    ,∠FAE=    ,∠DAB=    ,∠EFA=   
【答案】分析:連接OE,OB,由六邊形ABCDEF是⊙O的內(nèi)接正六邊形,即可求得圓心角∠EOD=∠AOB=60°,即可判定△OED與△OAB是等邊三角形,根據(jù)等邊三角形的性質(zhì),即可求得∠DAB與∠EDA的度數(shù),然后根據(jù)圓周角定理,求得∠EAD的度數(shù),由三角形的內(nèi)角和定理,即可求得∠AED的度數(shù),然后根據(jù)正六邊形的性質(zhì),求得∠AFE的度數(shù),由等腰三角形的性質(zhì),求得∠FAE的度數(shù).
解答:解:連接OE,OB,
∵六邊形ABCDEF是⊙O的內(nèi)接正六邊形,
∴∠EOD=∠AOB=×360°=60°,
∵OE=OD,OA=OB,
∴△OED與△OAB是等邊三角形,
∴∠ADE=∠DAB=60°;
∴∠EAD=∠EOD=×60°=30°,
∴∠AED=180°-∠EAD-∠ADE=90°;
∵六邊形ABCDEF是正六邊形,
∴∠EFA==120°,
∵AF=EF,
∴∠FAE==30°.
∴∠AED=90°,∠FAE=30°,∠DAB=60°,∠EFA=120°.
故答案為:90°,30°,60°,120°.
點(diǎn)評(píng):此題考查了圓的內(nèi)接多邊形、正六邊形的性質(zhì)、三角形內(nèi)角和定理、等邊三角形的判定與性質(zhì)以及等腰三角形的性質(zhì)等知識(shí).此題綜合性較強(qiáng),難度不大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,AB、BC、AC三邊的長分別為
10
、
5
13
,求這個(gè)三角形的面積.小華同學(xué)在解答這道題時(shí),先畫一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需要求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積,這種方法叫做構(gòu)圖法.
(1)△ABC的面積為:
(2)若△DEF三邊的長分別為
13
、2
5
29
,請?jiān)趫D①的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積.
(3)利用第(2)小題解題方法完成下題:如圖②,一個(gè)六邊形綠化區(qū)ABCDEF被分割成7個(gè)部分,其中正方形ABQP,CDRQ,EFPR的面積分別為13,20,29,且△PQR、△BCQ、△DER、△APF的面積相等,求六邊形綠化區(qū)ABCDEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,AB、BC、AC三邊的長分別為數(shù)學(xué)公式數(shù)學(xué)公式、數(shù)學(xué)公式,求這個(gè)三角形的面積.小華同學(xué)在解答這道題時(shí),先畫一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需要求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積,這種方法叫做構(gòu)圖法.
(1)△ABC的面積為:
(2)若△DEF三邊的長分別為數(shù)學(xué)公式、2數(shù)學(xué)公式數(shù)學(xué)公式,請?jiān)趫D①的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積.
(3)利用第(2)小題解題方法完成下題:如圖②,一個(gè)六邊形綠化區(qū)ABCDEF被分割成7個(gè)部分,其中正方形ABQP,CDRQ,EFPR的面積分別為13,20,29,且△PQR、△BCQ、△DER、△APF的面積相等,求六邊形綠化區(qū)ABCDEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,AB、BC、AC三邊的長分別為 、, 求這個(gè)三角形的面積.小華同學(xué)在解答這道題時(shí),先畫一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需要求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積,這種方法叫做構(gòu)圖法.

(1)△ABC的面積為            

(2)若△DEF三邊的長分別為 、、,請?jiān)趫D①的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積.

(3)利用第(2)小題解題方法完成下題:如圖②,一個(gè)六邊形綠化區(qū)ABCDEF被分割成7個(gè)部分,其中正方形ABQP,CDRQ,EFPR的面積分別為13,20,29,且△PQR、△BCQ、△DER、△APF的面積相等,求六邊形綠化區(qū)ABCDEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省連云港市新海實(shí)驗(yàn)中學(xué)九年級(jí)(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

在△ABC中,AB、BC、AC三邊的長分別為、,求這個(gè)三角形的面積.小華同學(xué)在解答這道題時(shí),先畫一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需要求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積,這種方法叫做構(gòu)圖法.
(1)△ABC的面積為:
(2)若△DEF三邊的長分別為、2、,請?jiān)趫D①的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積.
(3)利用第(2)小題解題方法完成下題:如圖②,一個(gè)六邊形綠化區(qū)ABCDEF被分割成7個(gè)部分,其中正方形ABQP,CDRQ,EFPR的面積分別為13,20,29,且△PQR、△BCQ、△DER、△APF的面積相等,求六邊形綠化區(qū)ABCDEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年安徽省安慶市桐城市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

在△ABC中,AB、BC、AC三邊的長分別為、,求這個(gè)三角形的面積.小華同學(xué)在解答這道題時(shí),先畫一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需要求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積,這種方法叫做構(gòu)圖法.
(1)△ABC的面積為:
(2)若△DEF三邊的長分別為、2、,請?jiān)趫D①的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積.
(3)利用第(2)小題解題方法完成下題:如圖②,一個(gè)六邊形綠化區(qū)ABCDEF被分割成7個(gè)部分,其中正方形ABQP,CDRQ,EFPR的面積分別為13,20,29,且△PQR、△BCQ、△DER、△APF的面積相等,求六邊形綠化區(qū)ABCDEF的面積.

查看答案和解析>>

同步練習(xí)冊答案