【題目】如圖,直線l:y=x+1與y軸交于點A,與雙曲線(x>0)交于點B(2,a).
(1)求a,k的值.
(2)點P是直線l上方的雙曲線上一點,過點P作平行于y軸的直線,交直線l于點C,過點A作平行于x軸的直線,交直線PC于點D,設點P的橫坐標為m.
①若m=,試判斷線段CP與CD的數(shù)量關系,并說明理由;②若CP>CD,請結合函數(shù)圖象,直接寫出m的取值范圍.
【答案】(1)a=3,k=6;(2)①CP=CD,見解析; ②.
【解析】
(1)把點B(2,a)代入y=x+1求得a的值,然后再根據(jù)待定系數(shù)法即可求得k;
(2)①把x=分別代入反比例函數(shù)的解析式和一次函數(shù)的解析式求得P、C的坐標,根據(jù)一次函數(shù)的解析式求得D點的坐標,從而求得PC=CD=;
②由①的結論結合圖象即可求得.
(1)∵直線l:y=x+1經(jīng)過點B(2,a),
∴a=2+1=3,
∴B(2,3),
∵點B(2,3)在雙曲線(x>0)上,
∴k=2×3=6;
(2)①∵點P的橫坐標為,把x=代入y=得,y==4,代入y=x+1得,y=+1=,
∴P(,4),C(,),
∵直線l:y=x+1與y軸交于點A,
∴A(0,1),
∴D(,1),
∴CP=4﹣=,CD=﹣1=,
∴CP=CD;
②由圖象結合①的結論可知,若CP>CD,m的取值范圍為0<m<.
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子中裝有6張卡片,6張卡片的正面分別標有數(shù)字﹣4,﹣3,﹣2,﹣1,6,8,這些卡片除數(shù)字外都相同,將卡片攪勻.
(1)從盒子中任意抽取一張卡片,求恰好抽到標有偶數(shù)卡片的概率;
(2)先從盒子中任意抽取一張卡片,把它上面的數(shù)字作為一個點的橫坐標,不放回,再從盒子剩余的卡片中任意抽取一張卡片,把它上面的數(shù)字作為這個點的縱坐標,求抽取的點恰好落在第二象限的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了增強中學生的體質(zhì),某校食堂每天都為學生提供一定數(shù)量的水果,學校李老師為了了解學生喜歡吃哪種水果,進行了抽樣調(diào)查,調(diào)查分為五種類型:A喜歡吃蘋果的學生;B喜歡吃桔子的學生;C.喜歡吃梨的學生;D.喜歡吃香蕉的學生;E喜歡吃西瓜的學生,并將調(diào)查結果繪制成圖1和圖2 的統(tǒng)計圖(不完整).請根據(jù)圖中提供的數(shù)據(jù)解答下列問題:
(1)求此次抽查的學生人數(shù);
(2)將圖2補充完整,并求圖1中的;
(3)現(xiàn)有5名學生,其中A類型2名,B類型2名,從中任選2名學生參加很體能測試,求這兩名學生為同一類型的概率(用列表法或樹狀圖法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在圓心角為120°的扇形OAB中,半徑OA=2,C為的中點,D為OA上任意一點(不與點O、A重合),則圖中陰影部分的面積為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,創(chuàng)新小組要測量公園內(nèi)一棵樹的高度AB,其中一名小組成員站在距離樹10米的點E處,測得樹頂A的仰角為54°.已知測角儀的架高CE=1.8米,則這顆樹的高度為_________米.(結果保留一位小數(shù).參考數(shù)據(jù):sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】Rt△ABC,已知∠C=90,∠B=50°,點D在邊BC上,BD=2CD (如圖).把△ABC繞著點D逆時針旋轉(zhuǎn)m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=( 。
A.80B.80或120C.60或120D.80或100
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是矩形AOBC的對稱中心,A(0,4),B(6,0),若一個反比例函數(shù)的圖象經(jīng)過點D,交AC于點M,則點M的坐標為___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為迎接十二運,某校開設了A:籃球,B:毽球,C:跳繩,D:健美操四種體育活動,為了解學生對這四種體育活動的喜歡情況,在全校范圍內(nèi)隨機抽取若干名學生,進行問卷調(diào)查(每個被調(diào)查的同學必須選擇而且只能在4中體育活動中選擇一種).將數(shù)據(jù)進行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).
(1)這次調(diào)查中,一共查了 名學生:
(2)請補全兩幅統(tǒng)計圖:
(3)若有3名最喜歡毽球運動的學生,1名最喜歡跳繩運動的學生組隊外出參加一次聯(lián)誼互活動,欲從中選出2人擔任組長(不分正副),求兩人均是最喜歡毽球運動的學生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com