【題目】某中學(xué)為了解九年級(jí)學(xué)生對(duì)三大球類(lèi)運(yùn)動(dòng)的喜愛(ài)情況,從九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查問(wèn)卷,通過(guò)分析整理繪制了如下兩幅統(tǒng)計(jì)圖.請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:
(1)求參與調(diào)查的學(xué)生中,喜愛(ài)排球運(yùn)動(dòng)的學(xué)生人數(shù),并補(bǔ)全條形圖;
(2)若該中學(xué)九年級(jí)共有800名學(xué)生,請(qǐng)你估計(jì)該中學(xué)九年級(jí)學(xué)生中喜愛(ài)籃求運(yùn)動(dòng)的學(xué)生有多少名?
(3)若從喜愛(ài)足球運(yùn)動(dòng)的2名男生和2名女生中隨機(jī)抽取2名學(xué)生,確定為該校足球運(yùn)動(dòng)員的重點(diǎn)培養(yǎng)對(duì)象,請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法求抽取的兩名學(xué)生為一名男生和一名女生的概率.
【答案】(1)60,補(bǔ)全圖見(jiàn)解析;(2)360;(3)
【解析】
(1)首先求出總?cè)藬?shù),進(jìn)而可求出喜愛(ài)排球運(yùn)動(dòng)的學(xué)生人數(shù),并補(bǔ)全條形圖即可;
(2)由總?cè)藬?shù)乘以喜愛(ài)籃球運(yùn)動(dòng)的學(xué)生的百分?jǐn)?shù)即可得解;
(3)畫(huà)樹(shù)狀圖展示12種等可能的結(jié)果數(shù),再找出抽取的兩人恰好是一名男生和一名女生結(jié)果數(shù),然后根據(jù)概率公式求解.
解:(1)由題意可知調(diào)查的總?cè)藬?shù)=12÷20%=60(人),
所以喜愛(ài)排球運(yùn)動(dòng)的學(xué)生人數(shù)=60×35%=21(人)
補(bǔ)全條形圖如圖所示:
(2)∵該中學(xué)九年級(jí)共有800名學(xué)生,
∴該中學(xué)九年級(jí)學(xué)生中喜愛(ài)籃球運(yùn)動(dòng)的學(xué)生有800×(1-35%-20%)=360名;
(3)畫(huà)樹(shù)狀圖為:
共有12種等可能的結(jié)果數(shù),其中抽取的兩人恰好是一名男生和一名女生結(jié)果數(shù)為8,
所以抽取的兩人恰好是一名男生和一名女生概率=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)共有800名學(xué)生,準(zhǔn)備調(diào)查他們對(duì)“低碳”知識(shí)的了解程度.
(1)在確定調(diào)查方式時(shí),團(tuán)委設(shè)計(jì)了以下三種方案:
方案一:調(diào)查七年級(jí)部分女生;
方案二:調(diào)查七年級(jí)部分男生;
方案三:到七年級(jí)每個(gè)班去隨機(jī)調(diào)查一定數(shù)量的學(xué)生.
請(qǐng)問(wèn)其中最具有代表性的一個(gè)方案是 ;
(2)團(tuán)委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計(jì)圖(如圖①、圖②所示),請(qǐng)你根據(jù)圖中信息,將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,“比較了解”所在扇形的圓心角的度數(shù)是 .
(4)請(qǐng)你估計(jì)該校七年級(jí)約有 名學(xué)生比較了解“低碳”知識(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)O在AB上,BC=CD,過(guò)點(diǎn)C作⊙O的切線(xiàn),分別交AB,AD的延長(zhǎng)線(xiàn)于點(diǎn)E,F.
(1)求證:AF⊥EF;
(2)若cos∠DAB=,BE=1,則線(xiàn)段AD的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校教學(xué)樓AB后方有一斜坡,斜坡與教學(xué)樓剖面在同一平面內(nèi),已知斜坡CD的長(zhǎng)為6m,坡度i=1:0.75,教學(xué)樓底部到斜坡底部的水平距離AC=8m,在教學(xué)樓頂部B點(diǎn)測(cè)得斜坡頂部D點(diǎn)的俯角為46°,則教學(xué)樓的高度約為( )
(參考數(shù)據(jù):sin46°≈0.72,cos46°≈0.69,tan46°≈1.04).
A.12.1mB.13.3m
C.16.9mD.18.1m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于任意一個(gè)四位數(shù),我們可以記為,即.若規(guī)定: 對(duì)四位正整數(shù)進(jìn)行 F運(yùn)算,得到整數(shù).例如,;.
(1)計(jì)算:;
(2)當(dāng)時(shí),證明:的結(jié)果一定是4的倍數(shù);
(3)求出滿(mǎn)足的所有四位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)用來(lái)盛爆米花的圓錐形紙杯,紙杯開(kāi)口的直徑 EF 長(zhǎng)為10cm,母線(xiàn)OE(OF)長(zhǎng)為10cm,在母線(xiàn)OF 上的點(diǎn)A 處有一塊爆米花殘?jiān)?/span>FA=2cm,一只螞蟻從杯口的點(diǎn)E 處沿圓錐表面爬行到A 點(diǎn),則此螞蟻爬行的最短距離為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,頂點(diǎn)為M的拋物線(xiàn)y=a(x+1)2-4分別與x軸相交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的)右側(cè)),與y軸相交于點(diǎn)C(0,﹣3).
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)判斷△BCM是否為直角三角形,并說(shuō)明理由.
(3)拋物線(xiàn)上是否存在點(diǎn)N(不與點(diǎn)C重合),使得以點(diǎn)A,B,N為頂點(diǎn)的三角形的面積與S△ABC的面積相等?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】疫情無(wú)情人有情,愛(ài)心捐款傳真情,新型冠狀病毒感染的肺炎疫情期間,某班學(xué)生積極參加獻(xiàn)愛(ài)心活動(dòng),該班50名學(xué)生的捐款統(tǒng)計(jì)情況如下表:
金額/元 | 5 | 10 | 20 | 50 | 100 |
人數(shù) | 6 | 17 | 14 | 8 | 5 |
則他們捐款金額的眾數(shù)和中位數(shù)分別是( )
A.100,10B.10,20C.17,10D.17,20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是直經(jīng),D是的中點(diǎn),DE⊥AC交AC的延長(zhǎng)線(xiàn)于E,⊙O的切線(xiàn)BF交AD的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:DE是⊙O的切線(xiàn).
(2)試探究AE,AD,AB三者之間的等量關(guān)系.
(3)若DE=3,⊙O的半徑為5,求BF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com