【題目】如圖,AB是⊙O的直徑,C為⊙O 上一點,過點C作⊙O的切線DEADDE于點D,DEAB的延長線交于點E,連接AC.

1)求證:AC平分∠DAE;

2)若⊙O的半徑為2,∠CAB=35°,求的長.

【答案】1)見解析;(2

【解析】

1)利用切線的性質(zhì)得出平行,再利用半徑相等得出等腰△AOC,等量代換得出AC平分∠DAE

2)求出所對的圓心角,利用弧長公式求解.

1)證明:∵DE是⊙O的切線,

OCDE.

又∵ADDE,

OCAD

∴∠1=3

OA=OC,∴∠2=3

∴∠1=2

AC平分∠DAE

2)解:∵在⊙O 中,∠COB=2CAB,且∠CAB=35°.

∴∠COB =70°.

又∵⊙O的半徑為2,∴的長為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天貓商城某網(wǎng)店銷售童裝,在春節(jié)即將將來臨之際,開展了市場調(diào)查發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件;如果每件童裝降價1元,那么平均每天可售出2.

1)假設(shè)每件童裝降價元時,每天可銷售 件,每件盈利 元;(用含人代數(shù)式表示)

2)每件童裝降價多少元時,平均每天盈利最多?每天最多盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小穎做摸球?qū)嶒,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是實驗中的一組統(tǒng)計數(shù)據(jù):

摸球的次數(shù)

100

200

300

500

800

1000

3000

摸到白球的次數(shù)

65

124

178

302

481

599

1803

摸到白球的頻率

0.65

0.62

0.593

0.604

0.601

0.599

0.601

1)請估計:當(dāng)很大時,摸到白球的頻率將會接近 .(精確到0.1

2)假如你摸一次,你摸到白球的概率P(白球)=

3)試估算盒子里黑、白兩種顏色的球各有多少只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+bx+3x軸交于AB兩點,與y軸交于點C,其中點A-10).過點A作直線y=x+c與拋物線交于點D,動點P在直線y=x+c上,從點A出發(fā),以每秒個單位長度的速度向點D運動,過點P作直線PQy軸,與拋物線交于點Q,設(shè)運動時間為ts.

1)直接寫出b,c的值及點D的坐標(biāo);

2)點 E是拋物線上一動點,且位于第四象限,當(dāng)△CBE的面積為6時,求出點E 的坐標(biāo);

3)在線段PQ最長的條件下,點M在直線PQ上運動,點Nx軸上運動,當(dāng)以點D、M、N為頂點的三角形為等腰直角三角形時,請求出此時點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的相似對角線”.

理解:

1)如圖1,已知RtABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點 D,使四邊形ABCD是以AC相似對角線的四邊形(畫出1個即可);

2)如圖2,在四邊形ABCD中,,對角線BD平分∠ABC.

求證: BD是四邊形ABCD相似對角線;

運用:

3)如圖3,已知FH是四邊形EFGH相似對角線,∠EFH=∠HFG.連接EG,EFG的面積為,求FH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐

問題情境

在一節(jié)數(shù)學(xué)活動課上,老師帶領(lǐng)同學(xué)們借助幾何畫板對以下題目進行了研究.如圖1,

MN是過點A的直線,點C為直線MN外一點,連接AC,作∠ACD=60°,使AC=DC,在MN上取一點B,使∠DBN=60°

觀察發(fā)現(xiàn)

1)根據(jù)圖1中的數(shù)據(jù),猜想線段AB、DB、CB之間滿足的數(shù)量關(guān)系是 ;

2)希望小組認(rèn)真思考后提出一種證明方法:將CB所在的直線以點C為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)60°,與直線MN交于點E,即可證明(1)中的結(jié)論. 請你在圖1中作出線段CE,并根據(jù)此方法寫出證明過程;

實踐探究

3)奮進小組在繼續(xù)探究的過程中,將點C繞點A逆時針旋轉(zhuǎn),他們發(fā)現(xiàn)當(dāng)旋轉(zhuǎn)到圖2和圖3的位置時,∠DBN=120°,線段AB、BDCB的大小發(fā)生了變化,但是仍然滿足一定的數(shù)量關(guān)系,請你直接寫出這兩種關(guān)系:

在圖2中,線段AB、DB、CB之間滿足的數(shù)量關(guān)系是

在圖3中,線段ABDB、CB之間滿足的數(shù)量關(guān)系是 ;

提出問題

4)智慧小組提出一個問題:若圖3BCCD于點C時,BC=2,則AC為多長?請你解答此問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重慶八中建校80周年,在體育、藝術(shù)、科技等方面各具特色,其中排球選修課是體育特色項目之一.體育組老師為了了解初一年級學(xué)生的訓(xùn)練情況,隨機抽取了初一年級部分學(xué)生進行1分鐘墊球測試,并將這些學(xué)生的測試成績(即1分鐘的墊球個數(shù),且這些測試成績都在60180范圍內(nèi))分段后給出相應(yīng)等級,具體為:測試成績在6090范圍內(nèi)的記為D級(不包括90),90120范圍內(nèi)的記為C級(不包括120),120150范圍內(nèi)的記為B級(不包括150),150180范圍內(nèi)的記為A級.現(xiàn)將數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計圖,其中在扇形統(tǒng)計圖中A級對應(yīng)的圓心角為90°,請根據(jù)圖中的信息解答下列問題:

1)在這次測試中,一共抽取了   名學(xué)生,并補全頻數(shù)分布直方圖:在扇形統(tǒng)計圖中,D級對應(yīng)的圓心角的度數(shù)為   度.

2)王攀同學(xué)在這次測試中1分鐘墊球140個.他為了了解自己墊球個數(shù)在年級排名的大致情況,他把成績?yōu)?/span>B等的全部同學(xué)1分鐘墊球人數(shù)做了統(tǒng)計,其統(tǒng)計結(jié)果如表:

成績(個)

120

125

130

135

140

145

人數(shù)(頻數(shù))

2

8

3

10

9

8

(墊球個數(shù)計數(shù)原則:120<墊球個數(shù)≤125記為125125<墊球個數(shù)≤130記為130,依此類推)請你估計王攀同學(xué)的1分鐘墊球個數(shù)在年級排名的大致情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C90°,AC4BC3,點DAB邊上一點(不與AB重合),若過點D的直線截得的三角形與ABC相似,并且平分ABC的周長,則AD的長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一汽車租賃公司擁有某種型號的汽車100輛.公司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金x()與每月租出的車輛數(shù)(y)有如下關(guān)系:

x

3000

3200

3500

4000

y

100

96

90

80

1)觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識求出每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.

2)已知租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.用含xx≥3000)的代數(shù)式填表:

租出的車輛數(shù)

未租出的車輛數(shù)

租出每輛車的月收益

所有未租出的車輛每月的維護費

3)若你是該公司的經(jīng)理,你會將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請求出公司的最大月收益是多少元.

查看答案和解析>>

同步練習(xí)冊答案