【題目】如圖,AB是⊙O的直徑,C為⊙O 上一點,過點C作⊙O的切線DE,AD⊥DE于點D,DE與AB的延長線交于點E,連接AC.
(1)求證:AC平分∠DAE;
(2)若⊙O的半徑為2,∠CAB=35°,求的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天貓商城某網(wǎng)店銷售童裝,在春節(jié)即將將來臨之際,開展了市場調(diào)查發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件;如果每件童裝降價1元,那么平均每天可售出2件.
(1)假設(shè)每件童裝降價元時,每天可銷售 件,每件盈利 元;(用含人代數(shù)式表示)
(2)每件童裝降價多少元時,平均每天盈利最多?每天最多盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小穎做摸球?qū)嶒,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是實驗中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù) | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的頻率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)請估計:當(dāng)很大時,摸到白球的頻率將會接近 .(精確到0.1)
(2)假如你摸一次,你摸到白球的概率P(白球)= .
(3)試估算盒子里黑、白兩種顏色的球各有多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+3與x軸交于A,B兩點,與y軸交于點C,其中點A(-1,0).過點A作直線y=x+c與拋物線交于點D,動點P在直線y=x+c上,從點A出發(fā),以每秒個單位長度的速度向點D運動,過點P作直線PQ∥y軸,與拋物線交于點Q,設(shè)運動時間為t(s).
(1)直接寫出b,c的值及點D的坐標(biāo);
(2)點 E是拋物線上一動點,且位于第四象限,當(dāng)△CBE的面積為6時,求出點E 的坐標(biāo);
(3)在線段PQ最長的條件下,點M在直線PQ上運動,點N在x軸上運動,當(dāng)以點D、M、N為頂點的三角形為等腰直角三角形時,請求出此時點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.
理解:
(1)如圖1,已知Rt△ABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點 D,使四邊形ABCD是以AC為“相似對角線”的四邊形(畫出1個即可);
(2)如圖2,在四邊形ABCD中,,對角線BD平分∠ABC.
求證: BD是四邊形ABCD的“相似對角線”;
運用:
(3)如圖3,已知FH是四邊形EFGH的“相似對角線”,∠EFH=∠HFG=.連接EG,若△EFG的面積為,求FH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐
問題情境
在一節(jié)數(shù)學(xué)活動課上,老師帶領(lǐng)同學(xué)們借助幾何畫板對以下題目進行了研究.如圖1,
MN是過點A的直線,點C為直線MN外一點,連接AC,作∠ACD=60°,使AC=DC,在MN上取一點B,使∠DBN=60°.
觀察發(fā)現(xiàn)
(1)根據(jù)圖1中的數(shù)據(jù),猜想線段AB、DB、CB之間滿足的數(shù)量關(guān)系是 ;
(2)希望小組認(rèn)真思考后提出一種證明方法:將CB所在的直線以點C為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)60°,與直線MN交于點E,即可證明(1)中的結(jié)論. 請你在圖1中作出線段CE,并根據(jù)此方法寫出證明過程;
實踐探究
(3)奮進小組在繼續(xù)探究的過程中,將點C繞點A逆時針旋轉(zhuǎn),他們發(fā)現(xiàn)當(dāng)旋轉(zhuǎn)到圖2和圖3的位置時,∠DBN=120°,線段AB、BD、CB的大小發(fā)生了變化,但是仍然滿足一定的數(shù)量關(guān)系,請你直接寫出這兩種關(guān)系:
在圖2中,線段AB、DB、CB之間滿足的數(shù)量關(guān)系是 ;
在圖3中,線段AB、DB、CB之間滿足的數(shù)量關(guān)系是 ;
提出問題
(4)智慧小組提出一個問題:若圖3中BC⊥CD于點C時,BC=2,則AC為多長?請你解答此問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶八中建校80周年,在體育、藝術(shù)、科技等方面各具特色,其中排球選修課是體育特色項目之一.體育組老師為了了解初一年級學(xué)生的訓(xùn)練情況,隨機抽取了初一年級部分學(xué)生進行1分鐘墊球測試,并將這些學(xué)生的測試成績(即1分鐘的墊球個數(shù),且這些測試成績都在60~180范圍內(nèi))分段后給出相應(yīng)等級,具體為:測試成績在60~90范圍內(nèi)的記為D級(不包括90),90~120范圍內(nèi)的記為C級(不包括120),120~150范圍內(nèi)的記為B級(不包括150),150~180范圍內(nèi)的記為A級.現(xiàn)將數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計圖,其中在扇形統(tǒng)計圖中A級對應(yīng)的圓心角為90°,請根據(jù)圖中的信息解答下列問題:
(1)在這次測試中,一共抽取了 名學(xué)生,并補全頻數(shù)分布直方圖:在扇形統(tǒng)計圖中,D級對應(yīng)的圓心角的度數(shù)為 度.
(2)王攀同學(xué)在這次測試中1分鐘墊球140個.他為了了解自己墊球個數(shù)在年級排名的大致情況,他把成績?yōu)?/span>B等的全部同學(xué)1分鐘墊球人數(shù)做了統(tǒng)計,其統(tǒng)計結(jié)果如表:
成績(個) | 120 | 125 | 130 | 135 | 140 | 145 |
人數(shù)(頻數(shù)) | 2 | 8 | 3 | 10 | 9 | 8 |
(墊球個數(shù)計數(shù)原則:120<墊球個數(shù)≤125記為125,125<墊球個數(shù)≤130記為130,依此類推)請你估計王攀同學(xué)的1分鐘墊球個數(shù)在年級排名的大致情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=4,BC=3,點D是AB邊上一點(不與A、B重合),若過點D的直線截得的三角形與△ABC相似,并且平分△ABC的周長,則AD的長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一汽車租賃公司擁有某種型號的汽車100輛.公司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出的車輛數(shù)(y)有如下關(guān)系:
x | 3000 | 3200 | 3500 | 4000 |
y | 100 | 96 | 90 | 80 |
(1)觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識求出每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.
(2)已知租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.用含x(x≥3000)的代數(shù)式填表:
租出的車輛數(shù) | 未租出的車輛數(shù) | ||
租出每輛車的月收益 | 所有未租出的車輛每月的維護費 |
(3)若你是該公司的經(jīng)理,你會將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請求出公司的最大月收益是多少元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com