【題目】如圖,已知

1)按以下步驟把圖形補(bǔ)充完整:的平分線和邊的垂直平分線相交于點(diǎn),過(guò)點(diǎn)作線段垂直于的延長(zhǎng)線于點(diǎn);

2)求證:所畫的圖形中

【答案】1)見解析;(2)見解析.

【解析】

1)按照要求作出的平分線和邊的垂直平分線以及過(guò)點(diǎn)作線段垂直于即可;

2)根據(jù)角平分線的性質(zhì)首先得出DF=DM,再利用全等三角形的判定定理求出AFD≌△AMD,得出AF=AM,再利用垂直平分線的性質(zhì)得出CD=BD,進(jìn)而得出RtCDFRtBDM,即可得出CF=BM,即可得解.

1)如圖所示:

2)連接CD、DB,作DM⊥ABM,如圖所示:

AD平分∠A,DF⊥ACDM⊥AB

DF=DM

AD=AD,∠AFD=∠AMD=90°,

AFD≌△AMDHl

AF=AM

DE垂直平分線BC

CD=BD

FD=DM∠AFD=∠DMB=90°,

RtCDFRtBDMHl

BM=CF

AB=AM+BMAF=AC+CF,AF=AM,BM=CF

AB=AC+2CF

AB-AC=2CF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分10分)如圖,在平行四邊形ABCD中,點(diǎn)AB、C的坐標(biāo)分別是(1,0)、(31)、(33),雙曲線y=k≠0,x0)過(guò)點(diǎn)D

1)求此雙曲線的解析式;

2)作直線ACy軸于點(diǎn)E,連結(jié)DE,求 CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠C=∠CBD=90°,DE⊥AB于點(diǎn)E.

(1)求證:△DBE∽△BAC.

(2)若BC=3,DB=2,CA=1,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商場(chǎng)某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件。設(shè)每件商品降價(jià)元。據(jù)此規(guī)律,請(qǐng)回答:

(1)商場(chǎng)日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。

(2)在上述條件不變、銷售正常情況下,每件商品降價(jià)多少元時(shí),商場(chǎng)日盈利可達(dá)到2100元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】上周六上午點(diǎn),小穎同爸爸媽媽一起從西安出發(fā)回安康看望姥姥,途中他們?cè)谝粋(gè)服務(wù)區(qū)休息了半小時(shí),然后直達(dá)姥姥家,如圖,是小穎一家這次行程中距姥姥家的距離(千米)與他們路途所用的時(shí)間(時(shí))之間的函數(shù)圖象,請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

(1)求直線所對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)已知小穎一家出服務(wù)區(qū)后,行駛分鐘時(shí),距姥姥家還有千米,問(wèn)小穎一家當(dāng)天幾點(diǎn)到達(dá)姥姥家?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3,點(diǎn)E,F(xiàn)分別在邊BCCD上,BE=CF=1,小球P從點(diǎn)E出發(fā)沿直線向點(diǎn)F運(yùn)動(dòng),完成第1次與邊的碰撞,每當(dāng)碰到正方形的邊時(shí)反彈,反彈時(shí)反射角等于入射角,則小球P與正方形的邊第2次碰撞到__邊上,小球P與正方形的邊完成第5次碰撞所經(jīng)過(guò)的路程為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:三角形ABC,A=90°,AB=AC,DBC的中點(diǎn).

(1)如圖,EF分別是AB、AC上的點(diǎn),BE=AF,求證:DEF為等腰直角三角形.

(2)EF分別為AB,CA延長(zhǎng)線上的點(diǎn),仍有BE=AF,其他條件不變,那么,DEF是否仍為等腰直角三角形?畫出圖形,寫出結(jié)論不證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,正方形ABCD的邊長(zhǎng)為4,對(duì)角線AC、BD交于點(diǎn)M

1)直接寫出AM=    ;

2P是射線AM上的一點(diǎn),QAP的中點(diǎn),設(shè)PQ=x

AP=     ,AQ=    

PQ為對(duì)角線作正方形,設(shè)所作正方形與△ABD公共部分的面積為S,用含x的代數(shù)式表示S,并寫出相應(yīng)的x的取值范圍.(直接寫出,不需要寫過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是△ABC的中線,ABADBC131210,△ABD的周長(zhǎng)是60cm.求AC

查看答案和解析>>

同步練習(xí)冊(cè)答案