【題目】列方程解應(yīng)用題
《九章算術(shù)》中有“盈不足術(shù)”的問題,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.問人數(shù)、羊價各幾何?”題意是:若干人共同出資買羊,每人出5元,則差45元;每人出7元,則差3元.求人數(shù)和羊價各是多少?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以每秒2厘米的速度由B點(diǎn)向C點(diǎn)運(yùn)動,同時,點(diǎn)Q在線段CA上以每秒a厘米的速度由C點(diǎn)向A點(diǎn)運(yùn)動,設(shè)運(yùn)動時間為t(秒)(0≤ t≤3).
(1)用的代數(shù)式表示PC的長度;
(2)若點(diǎn)P、Q的運(yùn)動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由.
(3)若點(diǎn)P、Q的運(yùn)動速度不相等,當(dāng)點(diǎn)Q的運(yùn)動速度a為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“爭創(chuàng)美麗校園,爭做文明學(xué)生”示范校評比活動中,10位評委給某校的評分情況下表所示:
評分(分) | 80 | 85 | 90 | 95 |
評委人數(shù) | 1 | 2 | 5 | 2 |
則這10位評委評分的平均數(shù)是分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:如圖1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半徑為2,P為圓上一動點(diǎn),連結(jié)AP、BP,求AP+BP的最小值.
(1)嘗試解決:為了解決這個問題,下面給出一種解題思路:如圖2,連接CP,在CB上取點(diǎn)D,使CD=1,則有,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴,∴PD=BP,∴AP+BP=AP+PD.
請你完成余下的思考,并直接寫出答案:AP+BP的最小值為 .
(2)自主探索:在“問題提出”的條件不變的情況下, AP+BP的最小值為 .
(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,點(diǎn)P是上一點(diǎn),求2PA+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB是等腰直角三角形,直線BD∥OA,OB=OA=1,P是線段AB上一動點(diǎn),過P點(diǎn)作MN∥OB,分別交OA、BD于M、N,PC⊥PO,交BD于點(diǎn)C.
(1)求證:OP=PC;
(2)當(dāng)點(diǎn)C在射線BN上時,設(shè)AP長為m,四邊形POBC的面積為S,請求出S與m間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當(dāng)點(diǎn)P在線段AB上移動時,點(diǎn)C也隨之在直線BN上移動,△PBC是否可能成為等腰三角形?如果可能,求出所有能使△PBC成為等腰三角形時的PM的值;如果不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是菱形,點(diǎn)C的坐標(biāo)為(4,0),∠AOC=60°,垂直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個單位長度的速度向右平移,設(shè)直線l與菱形OABC的兩邊分別交于點(diǎn)M,N(點(diǎn)M在點(diǎn)N的上方),若△OMN的面積為S,直線l的運(yùn)動時間為t 秒(0≤t≤4),則能大致反映S與t的函數(shù)關(guān)系的圖象是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】洲際彈道導(dǎo)彈的速度會隨著時間的變化而變化,某種型號的洲際彈道導(dǎo)彈的速度v(km/h)與時間t(h)的關(guān)系是v=1000+50t,若導(dǎo)彈發(fā)出0.5h即將擊中目標(biāo),則此時該導(dǎo)彈的速度應(yīng)為________km/h.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com