【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當(dāng)點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
【答案】
(1)證明:∵MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F,
∴∠2=∠5,∠4=∠6,
∵MN∥BC,
∴∠1=∠5,∠3=∠6,
∴∠1=∠2,∠3=∠4,
∴EO=CO,F(xiàn)O=CO,
∴OE=OF
(2)解:∵∠2=∠5,∠4=∠6,
∴∠2+∠4=∠5+∠6=90°,
∵CE=12,CF=5,
∴EF= =13,
∴OC= EF=6.5
(3)解:當(dāng)點O在邊AC上運動到AC中點時,四邊形AECF是矩形.
證明:當(dāng)O為AC的中點時,AO=CO,
∵EO=FO,
∴四邊形AECF是平行四邊形,
∵∠ECF=90°,
∴平行四邊形AECF是矩形.
【解析】(1)根據(jù)角平分線的定義得到角相等,再由平行線的性質(zhì)得到內(nèi)錯角相等,由等角對等邊得到EO=CO,F(xiàn)O=CO,即OE=OF;(2)由互為鄰補角的平分線互相垂直得到∠2+∠4=∠5+∠6=90°,根據(jù)勾股定理得到EF=13,求出OC的值;(3)根據(jù)矩形的判定方法可知,當(dāng)O為AC的中點時得到四邊形AECF是平行四邊形,再由有一個角是直角的平行四邊形是矩形判定即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點M是AB的中點,點P在MB上.分別以AP,PB為邊,作正方形APCD和正方形PBEF,連結(jié)MD和ME.設(shè)AP=a,BP=b,且a+b=10,ab=20.則圖中陰影部分的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,AE是BC邊上的中線,過點C作AE 的垂線CF,垂足為F,過點B作BD⊥BC,交CF的延長線于點D.
(1)求證:AE=CD.
(2)若AC=12 cm,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個袋中有3張形狀大小完全相同的卡片,編號為1,2,3,先任取一張,將其編號記為m,再從剩下的兩張中任取一張,將其編號記為n.
(1)請用樹狀圖或者列表法,表示事件發(fā)生的所有可能情況;
(2)求關(guān)于x的方程x2+mx+n=0有兩個不相等實數(shù)根的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,N,P,G分別在邊AB,BC,CD,DA上,點M,F(xiàn),Q都在對角線BD上,且四邊形MNPQ和AEFG均為正方形,則 的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為 1,在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點B 的對應(yīng)點 B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
(2)線段 AA′與線段 BB′的數(shù)量和位置關(guān)系是___________;
(3)求△A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線l1:y=﹣x2+bx+3交x軸于點A,B,(點A在點B的左側(cè)),交y軸于點C,其對稱軸為x=1,拋物線l2經(jīng)過點A,與x軸的另一個交點為E(5,0),交y軸于點D(0,﹣ ).
(1)求拋物線l2的函數(shù)表達式;
(2)P為直線x=1上一動點,連接PA,PC,當(dāng)PA=PC時,求點P的坐標(biāo);
(3)M為拋物線l2上一動點,過點M作直線MN∥y軸,交拋物線l1于點N,求點M自點A運動至點E的過程中,線段MN長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB和△DCE均為等腰三角形,點A、D、E在同一條直線上,BC和AE相交于點O,連接BE,若∠CAB=∠CBA=∠CDE=∠CED=50°。
(1)求證:AD=BE;
(2)求∠AEB。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=﹣ x+2與x軸,y軸分別交于B,C,拋物線y=ax2+bx+c(a≠0)經(jīng)過點A,B,C,點A坐標(biāo)為(﹣1,0).
(1)求拋物線的解析式;
(2)拋物線的對稱軸與x軸交于點D,連接CD,點P是直線BC上方拋物線上的一動點(不與B,C重合),當(dāng)點P運動到何處時,四邊形PCDB的面積最大?求出此時四邊形PCDB面積的最大值和點P坐標(biāo);
(3)在拋物線上的對稱軸上:是否存在一點M,使|MA﹣MC|的值最大;是否存在一點N,使△NCD是以CD為腰的等腰三角形?若存在,直接寫出點M,點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com