【題目】如圖1,拋物線與x軸交于A,B,與y軸交于C,拋物線的頂點(diǎn)為D,直線l過C交x軸于E(4,0).

(1)寫出D的坐標(biāo)和直線l的解析式;

(2)P(x,y)是線段BD上的動(dòng)點(diǎn)(不與B,D重合),PF⊥x軸于F,設(shè)四邊形OFPC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;

(3)點(diǎn)Q在x軸的正半軸上運(yùn)動(dòng),過Q作y軸的平行線,交直線l于M,交拋物線于N,連接CN,將△CMN沿CN翻轉(zhuǎn),M的對(duì)應(yīng)點(diǎn)為M′.在圖2中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請(qǐng)求出Q的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)D(1,4);(2)S=),S最大值為;(3)Q的坐標(biāo)為(,0)或(4,0).

【解析】

試題分析:(1)先把拋物線解析式成頂點(diǎn)式即可得到D點(diǎn)坐標(biāo),再求出C點(diǎn)坐標(biāo),然后利用待定系數(shù)法求直線l的解析式;

(2)先求出B(3,0),再求出直線BD的解析式為,則P(x,),根據(jù)梯形的面積公式可得S=,再利用而此函數(shù)的性質(zhì)求S的最大值;

(3)如圖2,設(shè)Q(t,0)(t>0),則M(t,),N(t,),利用兩點(diǎn)間的距離公式得到MN=,CM=,然后證明NM=CM得到=,再解方程求滿足條件的t的值,從而得到點(diǎn)Q的坐標(biāo).

試題解析:(1)=D(1,4),中,當(dāng)x=0時(shí),y=3,則C(0,3),設(shè)直線l的解析式為,把C(0,3),E(4,0)分別代入得,解得,直線l的解析式為;

(2)如圖(1),當(dāng)y=0時(shí),,解得,則B(3,0),設(shè)直線BD的解析式為,把B(3,0),D(1,4)分別代入得,解得,直線BD的解析式為,則P(x,),S==,S=當(dāng)x=時(shí),S有最大值,最大值為

(3)存在.

如圖2,設(shè)Q(t,0)(t>0),則M(t,),N(t,),MN==,CM==,∵△CMN沿CN翻轉(zhuǎn),M的對(duì)應(yīng)點(diǎn)為M′,M′落在y軸上,而QNy軸,MNCM′,NM=NM′,CM′=CM,CNM=CNM′,∴∠M′CN=CNM,∴∠M′CN=CNM′,CM′=NM′,NM=CM,=,

當(dāng)=,解得t1=0(舍去),t2=4,此時(shí)Q點(diǎn)坐標(biāo)為(4,0);

當(dāng)=,解得t1=0(舍去),t2=,此時(shí)Q點(diǎn)坐標(biāo)為(,0),

綜上所述,點(diǎn)Q的坐標(biāo)為(,0)或(4,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若直線AB與直線CD交于點(diǎn)O,OA平分∠COF,OE⊥CD.

(1)寫出圖中與∠EOB互余的角;
(2)若∠AOF=30°,求∠BOE和∠DOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC=9cm,BC=6cm,D為BC的中點(diǎn),動(dòng)點(diǎn)P從B點(diǎn)出發(fā),以每秒1cm的速度沿B→A→C的路線運(yùn)動(dòng)到C停止.設(shè)運(yùn)動(dòng)時(shí)間為t,過D、P兩點(diǎn)的直線將△ABC的周長(zhǎng)分成兩個(gè)部分,若其中一部分是另一部分的2倍,則此時(shí)t的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在對(duì)某社會(huì)機(jī)構(gòu)的調(diào)查中收集到以下數(shù)據(jù),你認(rèn)為最能夠反映該機(jī)構(gòu)年齡特征的統(tǒng)計(jì)量是( 。

年齡

13

14

15

25

28

30

35

其他

人數(shù)

30

533

17

12

20

9

2

3

A. 平均數(shù) B. 眾數(shù) C. 方差 D. 標(biāo)準(zhǔn)差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程x22x+m0有兩個(gè)相等的實(shí)數(shù)根,則m的值是( 。

A.1B.0C.1D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)我們利用2種不同的方法計(jì)算同一圖形的面積時(shí),可以得到一個(gè)等式.例如,由圖1,可得等式:(a+2b)(a+b)=a2+3ab+2b2
(1)由圖2,可得等式:
(2)利用(1)中所得到的結(jié)論,解決下面的問題:已知 a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)利用圖3中的紙片(足夠多),畫出一種拼圖,使該拼圖可用來驗(yàn)證等式:2a2+5ab+2b2=(2a+b)(a+2b);
(4)小明用2 張邊長(zhǎng)為a 的正方形,3 張邊長(zhǎng)為b的正方形,5 張邊長(zhǎng)分別為a、b 的長(zhǎng)方形紙片重新拼出一個(gè)長(zhǎng)方形,那么該長(zhǎng)方形較長(zhǎng)的一條邊長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小河兩岸邊各有一棵樹,分別高30尺和20尺,兩樹的距離是50尺,每棵樹的樹頂上都停著一只鳥.忽然,兩只鳥同時(shí)看見水面上游出一條魚,它們立刻飛去抓魚,速度相同,并且同時(shí)到達(dá)目標(biāo).則這條魚出現(xiàn)的地方離開比較高的樹的距離為尺.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x2-2x-8=0,則6x-3x2+18的值是(

A. -6 B. 6 C. 42 D. -42

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(21+2)÷(23)= .

查看答案和解析>>

同步練習(xí)冊(cè)答案