)如圖,在△ABC中,∠C=90°,∠B=30°,用直尺和

圓規(guī)作出∠A的平分線與BC邊交于點(diǎn)D(不寫(xiě)作法,保留作圖痕跡)。

在新圖形中,你發(fā)現(xiàn)了什么?請(qǐng)寫(xiě)出兩條。

 



解:如圖為所求作的圖形。

發(fā)現(xiàn):1、∠3=60°,2、點(diǎn)D在AB的中垂線上。

      3、等等


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


在平面直角坐標(biāo)系中,對(duì)于任意三點(diǎn),的“矩面積”,給出如下定義:

“水平底”:任意兩點(diǎn)橫坐標(biāo)差的最大值,“鉛垂高”:任意兩點(diǎn)縱坐標(biāo)差的最大值,則“矩面積”.

例如:三點(diǎn)坐標(biāo)分別為,,,則“水平底”,“鉛垂高”,“矩面積”

(1)已知點(diǎn),

①若,,三點(diǎn)的“矩面積”為12,求點(diǎn)的坐標(biāo);

②直接寫(xiě)出,三點(diǎn)的“矩面積”的最小值.

(2)已知點(diǎn),,,,其中,.

①若,三點(diǎn)的“矩面積”為8,求的取值范圍;

②直接寫(xiě)出,三點(diǎn)的“矩面積”的最小值及對(duì)應(yīng)取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


課本上,公式 (ab)2a2-2abb2 是由公式 (ab)2a2+2abb2 推導(dǎo)得出的.

已知 (ab)4a4+4a3b+6a2b2+4ab3b4,則 (ab)4       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,函數(shù)的圖象相交于點(diǎn)A(1,2)和點(diǎn)B,當(dāng)y1>y2時(shí)的變量x的取值范圍是(     )

A、x>1    B、-1<x<0    C、-1<x<0或x>1    D、x<-1或0<x<1

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


一組數(shù)據(jù)1,2,x,0的平均數(shù)是0,那么這組數(shù)據(jù)的中位數(shù)是        。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


類比、轉(zhuǎn)化、分類討論等思想方法和數(shù)學(xué)基本圖形在數(shù)學(xué)學(xué)習(xí)和解題中經(jīng)常用到,如下是一個(gè)案例,請(qǐng)補(bǔ)充完整。

原題:如圖1,在⊙O中,MN是直徑,ABMN于點(diǎn)B,CDMN于點(diǎn)D,AOC=90°,AB=3,CD=4,則BD=           。

⑴嘗試探究:如圖2,在⊙O中,MN是直徑,AB⊥MN于點(diǎn)B,CDMN于點(diǎn)D,點(diǎn)EMN上,∠AEC=90°,AB=3,BD=8,BEDE=1:3,則CD=           (試寫(xiě)出解答過(guò)程)。

⑵類比延伸:利用圖3,再探究,當(dāng)AC兩點(diǎn)分別在直徑MN兩側(cè),且ABCD,ABMN于點(diǎn)BCDMN于點(diǎn)D,∠AOC=90°時(shí),則線段AB、CDBD滿足的數(shù)量關(guān)系為       。

⑶拓展遷移:如圖4,在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)Am,6),Bn,1)兩點(diǎn)(其中0<m<3),且以y軸為對(duì)稱軸,且∠AOB=90°,①求mn的值;②當(dāng)S△AOB=10時(shí),求拋物線的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知兩圓的半徑長(zhǎng)是方程的兩個(gè)解,且兩圓的圓心距為d,若兩圓相離,則下列結(jié)論正確的是(     )

A.0<d<2        B. d>10         C. 0≤d<2或d>10    D.0<d<2或d>10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)C是線段OA上的一個(gè)動(dòng)點(diǎn)(不運(yùn)動(dòng)至O,A兩點(diǎn)),過(guò)點(diǎn)C作CD⊥x軸,垂足為D,以CD為邊在右側(cè)作正方形CDEF. 連接AF并延長(zhǎng)交x軸的正半軸于點(diǎn)B,連接OF,設(shè)OD=t.

⑴tan∠FOB=           ;

⑵ 已知二次函數(shù)圖像 經(jīng)過(guò)O、C、F三點(diǎn),求二次函數(shù)的解析式;

⑶ 當(dāng)t為何值時(shí)以B,E,F(xiàn)為頂點(diǎn)的三角形與△OFE相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


閱讀下列材料:求函數(shù)的最大值.

解:將原函數(shù)轉(zhuǎn)化成的一元二次方程,得.

為實(shí)數(shù),∴△=0.

.因此,的最大值為4.

根據(jù)材料給你的啟示,求函數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案