【題目】如圖,拋物線y=ax2+bx+c(a0)與直線y=-x相交于AB兩點(diǎn),則下列說法正確的是( )

A. ac<0,(b+1)2-4ac<0 B. ac<0,(b+1)2-4ac>0

C. ac>0,(b+1)2-4ac<0 D. ac>0,(b+1)2-4ac>0

【答案】D

【解析】

由拋物線的開口方向判斷a0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c0的關(guān)系,根據(jù)判別式判斷拋物線與直線的交點(diǎn)情況

∵拋物線開口向上,∴a>0.

∵拋物線與y軸交于正半軸,∴c>0,∴ac>0.

∵拋物線yax2+bx+ca≠0)與直線y=﹣x相交于兩點(diǎn),∴ax2+bx+x+c=0有兩個不相等的實(shí)數(shù)根,∴(b+1)2﹣4ac>0.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在相同的情況下各打靶6次,每次打靶的成績?nèi)缦拢海▎挝唬涵h(huán))

請你運(yùn)用所學(xué)的統(tǒng)計(jì)知識做出分析,從三個不同角度評價甲、乙兩人的打靶成績.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,A(a,0),B(0,b)其中ab滿足.點(diǎn)Cx軸正半軸上的一點(diǎn),且點(diǎn)C在點(diǎn)A右側(cè),若點(diǎn)D為第一象限內(nèi)一點(diǎn),且滿足CDCB,

(1)AB的坐標(biāo);

(2)如圖1,點(diǎn)EBD中點(diǎn),連接OE,求證:;

(3)如圖2,若點(diǎn)F、GBA上的兩個動點(diǎn),且,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮用如下的同一個轉(zhuǎn)盤進(jìn)行配紫色游戲.游戲規(guī)則如下:連續(xù)轉(zhuǎn)動兩次轉(zhuǎn)盤,如果兩次轉(zhuǎn)盤轉(zhuǎn)出的顏色相同或配成紫色(若其中一次轉(zhuǎn)盤轉(zhuǎn)出藍(lán)色,另一次轉(zhuǎn)出紅色,則可配成紫色),則小明得1,否則小亮得1分.你認(rèn)為這個游戲?qū)﹄p方是否公平?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題情境】

如圖1,四邊形ABCD是正方形,MBC邊上的一點(diǎn),ECD邊的中點(diǎn),AE平分∠DAM

【探究展示】

1)證明:AM=AD+MC

2AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.

【拓展延伸】

3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請分別作出判斷,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種蔬菜每千克售價(元)與銷售月份之間的關(guān)系如圖1所示,每千克成本(元)與銷售月份之間的關(guān)系如圖2所示,其中圖1中的點(diǎn)在同一條線段上,圖2中的點(diǎn)在同一條拋物線上,且拋物線的最低點(diǎn)的坐標(biāo)為(6,1).

1)求出之間滿足的函數(shù)表達(dá)式,并直接寫出的取值范圍;

2)求出之間滿足的函數(shù)表達(dá)式;

3)設(shè)這種蔬菜每千克收益為元,試問在哪個月份出售這種蔬菜,將取得最大值?并求出此最大值.(收益=售價-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C,F為⊙O上兩點(diǎn),過CCDAB于點(diǎn)D,交⊙O于點(diǎn)E,延長ECBF的延長線于點(diǎn)G,連接CF,EG

1)求證:∠BFE=∠CFG

2)若FG=4,BF=6,CF=3.求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線交AB,BC分別于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過點(diǎn)M,N.

(1)求反比例函數(shù)的解析式;

(2)若點(diǎn)P在y軸上,且OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同。

(1)從箱子中任意摸出一個球是白球的概率是多少?

(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。

查看答案和解析>>

同步練習(xí)冊答案