【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點E在BC的延長線上,若∠BOD=120°,則∠DCE=

【答案】60°
【解析】解:∵∠BOD=120°, ∴∠A= ∠BOD=60°.
∵四邊形ABCD是圓內(nèi)接四邊形,
∴∠DCE=∠A=60°.
所以答案是:60°.
【考點精析】根據(jù)題目的已知條件,利用圓周角定理和圓內(nèi)接四邊形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;把圓分成n(n≥3):1、依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形2、經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AD、BC的延長線相交于點E,AB、DC的延長線相交于點F.若∠E+∠F=80°,則∠A=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB、CD分別表示甲乙兩建筑物的高,BA⊥AD,CD⊥DA,垂足分別為A、D.從D點測到B點的仰角α為60°,從C點測得B點的仰角β為30°,甲建筑物的高AB=30米

(1)求甲、乙兩建筑物之間的距離AD.
(2)求乙建筑物的高CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞點C順時針旋轉(zhuǎn),使點B落在AB邊上點B′處,此時,點A的對應(yīng)點A′恰好落在BC邊的延長線上,下列結(jié)論錯誤的(
A.∠BCB′=∠ACA′
B.∠ACB=2∠B
C.∠B′CA=∠B′AC
D.B′C平分∠BB′A′

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別位于反比例函數(shù)y= ,y= 在第一象限圖象上的兩點A、B,與原點O在同一直線上,且 =
(1)求反比例函數(shù)y= 的表達(dá)式;
(2)過點A作x軸的平行線交y= 的圖象于點C,連接BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D,過點D作⊙O的切線DE交AC于點E,交AB延長線于點F.
(1)求證:DE⊥AC;
(2)若AB=10,AE=8,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,地面上兩個村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內(nèi).當(dāng)該飛行器飛行至村莊C的正上方A處時,測得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時,測得∠ABD=75°.求村莊C、D間的距離( 取1.73,結(jié)果精確到0.1千米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖正方形ABCD的邊長為2,點E、F、G、H分別在AD、AB、BC、CD上的點,且AE=BF=CG=DH,分別將△AEF、△BFG、△CGH、△DHE沿EF、FG、GH、HE翻折,得四邊形MNKP,設(shè)AE=x,S四邊形MNKP=y,則y關(guān)于x的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師為了了解所教班級學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對本班部分學(xué)生進(jìn)行了為期半個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類,A:很好;B:較好;C:一般;D:較差.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)李老師一共調(diào)查了多少名同學(xué)?
(2)C類女生有3名,D類男生有1名,將圖1條形統(tǒng)計圖補(bǔ)充完整;
(3)為了共同進(jìn)步,李老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊答案