【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點E在CB的延長線上,BA平分∠EBD,AE=AB.
(1)求證:AC=AD.
(2)當,AD=6時,求CD的長.
【答案】(1)證明見解析;(2)CD=4.
【解析】
(1)利用BA平分∠EBD得到∠ABE=∠ABD,再根據(jù)圓周角定理得到∠ABE=∠ADC,∠ABD=∠ACD,利用等量代換得到∠ACD=∠ADC,從而得到結(jié)論;
(2)根據(jù)等腰三角形的性質(zhì)得到∠E=∠ABE,則可證明△ABE∽△ACD,然后根據(jù)相似比求出CD的長.
(1)證明:∵BA平分∠EBD,
∴∠ABE=∠ABD,
∵∠ABE=∠ADC,∠ABD=∠ACD,
∴∠ACD=∠ADC,
∴AC=AD;
(2)解:∵AE=AB,
∴∠E=∠ABE,
∴∠E=∠ABE=∠ACD=∠ADC,
∴△ABE∽△ACD,
∴==,
∴CD=AD=×6=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.
(1)從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;
(2)小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場一種商品的進價為每件元,售價為每件元,每天可以銷售件,為盡快減少庫存,商場決定降價促銷.
(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件元,求兩次下降的百分率;
(2)經(jīng)調(diào)查,若該商品每降價元,每天可多銷售件,
①每天要想獲得元的利潤,每件應(yīng)降價多少元?
②能不能一天獲得元的利潤?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與x軸交于點A,與y軸交于點B,將△AOB繞點O順時針旋轉(zhuǎn)90°后得到△COD.
(1)點C的坐標是 ,線段AD的長等于 ;
(2)點M在CD上,且CM=OM,拋物線y=x2+bx+c經(jīng)過點G,M,求拋物線的解析式;
(3)如果點E在y軸上,且位于點C的下方,點F在直線AC上,那么在(2)中的拋物線上是否存在點P,使得以C,E,F,P為頂點的四邊形是菱形?若存在,請求出該菱形的周長l;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y=﹣x2+bx+c與x軸交于點A(﹣3,0)和點B,與y軸交于點C (0,2).
(1)求拋物線的表達式,并用配方法求出頂點D的坐標;
(2)若點E是點C關(guān)于拋物線對稱軸的對稱點,求tan∠CEB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-2kx+k2-2=0.
(1)求證:不論k為何值,方程總有兩不相等實數(shù)根.
(2)設(shè)x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 經(jīng)過點,與軸相交于,兩點,
(1)拋物線的函數(shù)表達式;
(2)點在拋物線的對稱軸上,且位于軸的上方,將沿沿直線翻折得到,若點恰好落在拋物線的對稱軸上,求點和點的坐標;
(3)設(shè)是拋物線上位于對稱軸右側(cè)的一點,點在拋物線的對稱軸上,當為等邊三角形時,求直線的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖是邊長為10的等邊△ABC.
(1)作圖:在三角形ABC中找一點P,連接PA、PB、PC,使△PAB、△PBC、△PAC面積相等.(不寫作法,保留痕跡.)
(2)求點P到三邊的距離和PA的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com