【題目】如圖,已知反比例函數(shù) 的圖象上有一組點B1,B2,…,Bn,它們的橫坐標依次增加1,且點B1橫坐標為1.“①,②,③…”分別表示如圖所示的三角形的面積,記S1=①-②,S2=②-③,…,則S7的值為 ,S1+S2+…+Sn= (用含n的式子表示),.

【答案】
【解析】根據(jù)反比例函數(shù)圖像的性質(zhì)可知:①=1,②=,所以S1=①-②=1- ,S2=②-③= ,…,

則S7 ==,S1+S2+…+Sn=1-+ +..+ -=1-=
【考點精析】認真審題,首先需要了解反比例函數(shù)的圖象(反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C,D,E,F(xiàn)為⊙O的六等分點,動點P從圓心O出發(fā),沿OE弧EFFO的路線做勻速運動,設(shè)運動的時間為t,∠BPD的度數(shù)為y,則下列圖象中表示y與t之間函數(shù)關(guān)系最恰當?shù)氖牵?)

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,BC=8,沿直線MN對折,使A、C重合,直線MN交AC于O.

(1)求證:COM∽△CBA;

(2)求線段OM的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=mx2-8mx+16m-1(m>0)與x軸的交點分別為A(x1 , 0),B(x2 , 0).
(1)求證:拋物線總與x軸有兩個不同的交點;
(2)若AB=2,求此拋物線的解析式.
(3)已知x軸上兩點C(2,0),D(5,0),若拋物線y=mx2-8mx+16m-1(m>0)與線段CD有交點,請寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線ab,直線c分別與直線a,b相交于點EF,點A,B分別在直線a,b上,且在直線c的左側(cè),點P是直線c上一動點(不與點E,F重合),設(shè)∠PAE=∠1,∠APB=∠2,∠PBF=∠3

1)如圖,當點P在線段EF上運動時,試探索∠1,∠2,∠3之間的關(guān)系,并給出證明;

2)當點P在線段EF外運動時,請你在備用圖中畫出圖形,并判斷(1)中的結(jié)論是否還成立?若不成立,請你探索∠1,∠2,∠3之間的關(guān)系(不需要證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,填空并填寫理由:

(1)因為∠1=∠2,所以ADBC__________

(2)因為A+∠ABC=180°,所以ADBC________

(3)因為_____________,所以C+∠ABC=180°(兩直線平行,同旁內(nèi)角互補)

(4)因為____________,所以∠3=∠C(兩直線平行,同位角相等)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,按以下步驟作圖:

①以B為圓心,任意長為半徑作弧,交AB于D,交BC于E;

②分別以D,E為圓心,以大于DE的同樣長為半徑作弧,兩弧交于點F;

③作射線BFACG.

如果BG=CG,∠A=60°,那么∠ACB的度數(shù)為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應(yīng)綠色出行號召,越來越多市民選擇租用共享單車出行,已知某共享單車公司為市民提供了手機支付和會員卡支付兩種支付方式如圖描述了兩種方式應(yīng)支付金額y()與騎行時間x()之間的函數(shù)關(guān)系,根據(jù)圖象回答下列問題:

(1)求手機支付金額y()與騎行時間x()的函數(shù)關(guān)系式;

(2)李老師經(jīng)常騎行共享單車請根據(jù)不同的騎行時間幫他確定選擇哪種支付方式比較合算

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同學們都知道:|5﹣(﹣2|表示5與﹣2之差的絕對值,實際上也可理解為5與﹣2兩數(shù)在數(shù)軸上所對應(yīng)的兩點之間的距離.請你借助數(shù)軸進行以下探索:

1)數(shù)軸上表示5與﹣2兩點之間的距離是 ,

2)數(shù)軸上表示x2的兩點之間的距離可以表示為

3)如果|x2|=5,則x=

4)同理|x+3|+|x1|表示數(shù)軸上有理數(shù)x所對應(yīng)的點到﹣31所對應(yīng)的點的距離之和,請你找出所有符合條件的整數(shù)x,使得|x+3|+|x1|=4,這樣的整數(shù)是

查看答案和解析>>

同步練習冊答案