已知兩點(diǎn)均在拋物線上,點(diǎn)是該拋物線的頂點(diǎn),若,則的取值范圍是【   】
A.B.C.D.
B。
∵點(diǎn)是該拋物線的頂點(diǎn),且
為函數(shù)的最小值!鄴佄锞的開口向上。
,∴點(diǎn)A、B可能在對稱軸的兩側(cè)或者是在對稱軸的左側(cè)。
當(dāng)在對稱軸的左側(cè)時,∵y隨x的增大而減小,∴;
當(dāng)在對稱軸的兩側(cè)時,∵點(diǎn)B距離對稱軸的距離小于點(diǎn)A到對稱軸的距離,
,解得。
綜上所得:。故選B。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與y軸交于點(diǎn)C(0,-4),與x軸交于點(diǎn)A,B,且B點(diǎn)的坐標(biāo)為(2,0)

(1)求該拋物線的解析式;
(2)若點(diǎn)P是AB上的一動點(diǎn),過點(diǎn)P作PE∥AC,交BC于E,連接CP,求△PCE面積的最大值;
(3)若點(diǎn)D為OA的中點(diǎn),點(diǎn)M是線段AC上一點(diǎn),且△OMD為等腰三角形,求M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+3與x軸交于A、B兩點(diǎn),過點(diǎn)A的直線l與拋物線交于點(diǎn)C,其中A點(diǎn)的坐標(biāo)是(1,0),C點(diǎn)坐標(biāo)是(4,3).

(1)求拋物線的解析式;
(2)在(1)中拋物線的對稱軸上是否存在點(diǎn)D,使△BCD的周長最?若存在,求出點(diǎn)D的坐標(biāo),若不存在,請說明理由;
(3)若點(diǎn)E是(1)中拋物線上的一個動點(diǎn),且位于直線AC的下方,試求△ACE的最大面積及E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(3,4)的拋物線交 y軸與A點(diǎn),交x軸與B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知A點(diǎn)坐標(biāo)為(0,-5).

(1)求此拋物線的解析式;
(2)過點(diǎn)B作線段AB的垂線交拋物線與點(diǎn)D,如果以點(diǎn)C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸與⊙C的位置關(guān)系,并給出證明.
(3)在拋物線上是否存在一點(diǎn)P,使△ACP是以AC為直角邊的直角三角形.若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線C1:y=x2。如圖(1),平移拋物線C1得到拋物線C2,C2經(jīng)過C1的頂點(diǎn)O和A(2,0),C2的對稱軸分別交C1、C2于點(diǎn)B、D。

(1)求拋物線C2的解析式;
(2)探究四邊形ODAB的形狀并證明你的結(jié)論;
(3)如圖(2),將拋物線C2向下平移m個單位(m>0)得拋物線C3,C3的頂點(diǎn)為G,與y軸交于M。點(diǎn)N是M關(guān)于x軸的對稱點(diǎn),點(diǎn)P()在直線MG上。問:當(dāng)m為何值時,在拋物線C3上存在點(diǎn)Q,使得以M、N、P、Q為頂點(diǎn)的四邊形為平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中有一矩形ABCO(O為原點(diǎn)),點(diǎn)A、C分別在x軸、y軸上,且C點(diǎn)坐標(biāo)為(0,6),將△BCD沿BD折疊(D點(diǎn)在OC邊上),使C點(diǎn)落在DA邊的E點(diǎn)上,并將△BAE沿BE折疊,恰好使點(diǎn)A落在BD邊的F點(diǎn)上.

(1)求BC的長,并求折痕BD所在直線的函數(shù)解析式;
(2)過點(diǎn)F作FG⊥x軸,垂足為G,F(xiàn)G的中點(diǎn)為H,若拋物線經(jīng)過B,H, D三點(diǎn),求拋物線解析式;
(3)點(diǎn)P是矩形內(nèi)部的點(diǎn),且點(diǎn)P在(2)中的拋物線上運(yùn)動(不含B, D點(diǎn)),過點(diǎn)P作PN⊥BC,分別交BC 和 BD于點(diǎn)N, M,是否存在這樣的點(diǎn)P,使如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù),則此二次函數(shù)(   )
A.有最大值1B.有最小值1C.有最大值-3D.有最小值-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一次函數(shù)、二次函數(shù)和反比例函數(shù)在同一直角坐標(biāo)系中圖象如圖,A點(diǎn)為(-2,0)。則下列結(jié)論中,正確的是【   】
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系xOy中,若動點(diǎn)P在拋物線y=ax2上,⊙P恒過點(diǎn)F(0,n),且與直線y=﹣n始終保持相切,則n=   (用含a的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案