【題目】拋物線的對(duì)稱軸為直線.若關(guān)于的一元二次方程在的范圍內(nèi)有實(shí)數(shù)根,則的取值范圍是_____________.
【答案】2≤t<11
【解析】
根據(jù)給出的對(duì)稱軸求出函數(shù)解析式為y=x22x+3,將一元二次方程x2+bx+3t=0的實(shí)數(shù)根可以看做y=x22x+3與函數(shù)y=t的有交點(diǎn),再由1<x<4的范圍確定y的取值范圍即可求解;
解:∵y=x2+bx+3的對(duì)稱軸為直線x=1,
∴b=2,
∴y=x22x+3,
∴一元二次方程x2+bx+3t=0的實(shí)數(shù)根可以看做y=x22x+3與函數(shù)y=t的有交點(diǎn),
∵方程在1<x<4的范圍內(nèi)有實(shí)數(shù)根,
當(dāng)x=1時(shí),y=6;
當(dāng)x=4時(shí),y=11;
函數(shù)y=x22x+3在x=1時(shí)有最小值2;
∴2≤t<11
故填:2≤t<11.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中是的中點(diǎn),平分交于點(diǎn),連接,以下四個(gè)結(jié)論:①平分;②;③;④.其中結(jié)論正確的個(gè)數(shù)是( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠A=60°,點(diǎn)O為AB上一點(diǎn),且3AO=AB,以OA為半徑作半圓O,交AC于點(diǎn)D,AB于點(diǎn)E,DE與OC相交于F.
(1)求證:CB與⊙O相切;
(2)若AB=6,求DF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx﹣12的圖象交x軸于A(﹣3,0),B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.點(diǎn)D是拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,并且當(dāng)m≤x≤m+5時(shí),對(duì)應(yīng)的函數(shù)值y滿足﹣m,求m的值;
(3)若點(diǎn)D在第四象限內(nèi),過點(diǎn)D作DE∥y軸交BC于E,DF⊥BC于F.線段EF的長度是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值及相應(yīng)點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲、乙、丙三人組成的籃球訓(xùn)練小組,他們?nèi)酥g進(jìn)行互相傳球練習(xí),籃球從一個(gè)人手中隨機(jī)傳到另外一個(gè)人手中計(jì)作傳球一次,共連續(xù)傳球三次.
(1)若開始時(shí)籃球在甲手中,則經(jīng)過第一次傳球后,籃球落在丙的手中的概率是 ;
(2)若開始時(shí)籃球在甲手中,求經(jīng)過連續(xù)三次傳球后,籃球傳到乙的手中的概率.(請(qǐng)用畫樹狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的邊的垂直平分線,垂足為點(diǎn),與的延長線交于點(diǎn).連接,,,與交于點(diǎn),則下列結(jié)論:①四邊形是菱形;②;③;④四邊形;其中正確的結(jié)論有_____.(填寫所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形ABCD中,G為CD邊中點(diǎn),連接AG并延長交BC邊的延長線于E點(diǎn),對(duì)角線BD交AG于F點(diǎn).已知FG=2,則線段AE的長度為( 。
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的兩條邊的長是方程的兩根沿直線將矩形折疊,點(diǎn)落在第一象限的點(diǎn)處,交軸于點(diǎn).
(1)求點(diǎn)和點(diǎn)的坐標(biāo);
(2)將直線以每秒個(gè)單位長度的速度沿軸向下平移,求直線掃過的三角形的面積關(guān)于運(yùn)動(dòng)的時(shí)間的函數(shù)關(guān)系式;
(3)在(2)的條件下,在移動(dòng)的直線上是否存在點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司甲、乙兩名快遞員7月上旬10天里派送快遞,乙比甲晚工作一段時(shí)間,工作期間快遞員甲因事停工3天,各自的工作效率一定,他們各自的工作量(件)隨工作時(shí)間(天)變化的圖像如圖所示.則有下列說法:①甲工人的工作效率為60件/天;②乙工人每天比甲工人少送10件;③甲工人一共送420件;④乙比甲少工作2天.其中正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com