【題目】如圖,所有小正方形的邊長都為1個單位,A、B、C均在格點上.
過點C畫線段AB的平行線CD;
過點A畫線段BC的垂線,垂足為E;
過點A畫線段AB的垂線,交線段CB的延長線于點F;
線段AE的長度是點______到直線______的距離;
線段AE、BF、AF的大小關系是______用“”連接
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C的坐標分別為(6,0)、(0,4),點P是線段BC上的動點,當△OPA是等腰三角形時,則P點的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式:,,,則以上三個等式兩邊分別相加得:.
觀察發(fā)現(xiàn)
______;______.
拓展應用
有一個圓,第一次用一條直徑將圓周分成兩個半圓如圖,在每個分點標上質數(shù)m,記2個數(shù)的和為;第二次再將兩個半圓周都分成圓周如圖,在新產生的分點標上相鄰的已標的兩數(shù)之和的,記4個數(shù)的和為;第三次將四個圓周分成圓周如圖,在新產生的分點標上相鄰的已標的兩數(shù)之和的,記8個數(shù)的和為;第四次將八個圓周分成圓周,在新產生的分點標上相鄰的已標的兩個數(shù)的和的,記16個數(shù)的和為;如此進行了n次.
______用含m、n的代數(shù)式表示;
當時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國淡水資源短缺問題十分突出,已成為我國經(jīng)濟和社會可持續(xù)發(fā)展的重要制約因素,節(jié)約用水是各地的一件大事.某校初三學生為了調查居民用水情況,隨機抽查了某小區(qū)20戶家庭的月用水量,結果如表所示:
(1)求這20戶家庭月用水量的平均數(shù)、眾數(shù)及中位數(shù).
(2)政府為了鼓勵節(jié)約用水,擬試行水價浮動政策.即設定每個家庭月基本用水量a(t),家庭月用水量不超過a(t)的部分按原價收費,超過a(t)的部分加倍收費.
①你認為以平均數(shù)作為該小區(qū)的家庭月基本用水量a(t)合理嗎?為什么?(簡述理由)
②你認為該小區(qū)的家庭月基本用水量a(t)為多少時較為合理?為什么?(簡述理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1,在方格紙中將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標出來點A,點B′、點C和它的對應點C′.
(1)請畫出平移前后的△ABC和△A′B′C′;(注意并標注好字母)
(2)利用網(wǎng)格畫出△ABC中BC邊上的中線AD;(注意并標注好字母)
(3)利用網(wǎng)格畫出△ABC中AB邊上的高CE;(注意并標注好字母)
(4)△A′B′C′的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(知識生成)
我們已經(jīng)知道,通過不同的方法表示同一圖形的面積,可以探求相應的等式.
2002年8月在北京召開了國際數(shù)學大會,大會會標如圖1所示,它是由四個形狀大小完全相同的直角三角形與中間的小正方形拼成的一個大正方形,直角三角形的兩條直角邊長分別為a、b ( a<b ),斜邊長為c.
(1)圖中陰影部分的面積用兩種方法可分別表示為 、 ;
(2)你能得出的a,b,c之間的數(shù)量關系是 (等號兩邊需化為最簡形式);
(3)一直角三角形的兩條直角邊長為6和8,則其斜邊長為 .
(知識遷移)
通過不同的方法表示同一幾何體的體積,也可以探求相應的等式.如圖2是邊長為a+b的正方體,被如圖所示的分割線分成8塊.
(4)用不同方法計算這個正方體體積,就可以得到一個等式,這個等式可以為 .(等號兩邊需化為最簡形式)
(5)已知a+b=3,ab=1,利用上面的規(guī)律求a3+b3的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某開發(fā)公司要生產若干件新產品,需要精加工后,才能投放市場,現(xiàn)有紅星和巨星兩家加工廠都想加工這批產品,已知紅星廠單獨加工比巨星廠單獨加工這批產品多用20天,紅星廠每天可加工16件產品,巨星廠每天可加工24件產品,公司需付給紅星廠每天加工費800元,付給巨星廠每天加工費1200元.
這個公司要加工多少件新產品?
公司的產品可由一家工廠單獨加工完成,也可由兩家工廠合作完成,在加工過程中公司需另派一名工程師每天到廠家進行指導,并支付工程師每天10元的午餐補助,請你幫助公司從所有可供選擇的方案中,選擇一種既省錢又省時的加工方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某社區(qū)超市第一次用6000元購進甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進價和售價如下表:(注:獲利=售價﹣進價)
甲 | 乙 | |
進價(元/件) | 22 | 30 |
售價(元/件) | 29 | 40 |
(1)該超市購進甲、乙兩種商品各多少件?
(2)該超市將第一次購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?
(3)該超市第二次以第一次的進價又購進甲、乙兩種商品,其中甲商品的件數(shù)不變,乙商品的件數(shù)是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤比第一次獲得的總利潤多180元,求第二次乙商品是按原價打幾折銷售?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,G為BC邊上一點,BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,四邊形ABED的面積為6,求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com