如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=2
3
,直線y=
3
x-2
3
經(jīng)過點C,交y軸于點G.
(1)點C、D的坐標(biāo);
(2)求頂點在直線y=
3
x-2
3
上且經(jīng)過點C、D的拋物線的解析式;
(3)將(2)中的拋物線沿直線y=
3
x-2
3
平移,平移后的拋物線交y軸于點F,頂點為點E.平移后是否存在這樣的拋物線,使△EFG為等腰三角形?若存在,請求出此時拋物線的解析式;若不存在,請明理由.
(1)令y=2
3
,2
3
=
3
x-2
3
,解得x=4,則OA=4-3=1,
∴C(4,2
3
),D(1,2
3
);

(2)由二次函數(shù)對稱性得,頂點橫坐標(biāo)為
1+4
2
=
5
2
,
令x=
5
2
,則y=
3
×
5
2
-2
3
=
3
2
,
∴頂點坐標(biāo)為(
5
2
3
2
),
∴設(shè)拋物線解析式為y=a(x-
5
2
2+
3
2
,把點D(1,2
3
)代入得,a=
2
3
3

∴解析式為y=
2
3
3
(x-
5
2
2+
3
2
;

(3)設(shè)頂點E在直線上運動的橫坐標(biāo)為m,則E(m,
3
m-2
3
)(m>0)
∴可設(shè)解析式為y=
2
3
3
(x-m)2+
3
m-2
3
,
①當(dāng)FG=EG時,F(xiàn)G=EG=2m,則F(0,2m-2
3
),代入解析式得:
2
3
3
m2+
3
m-2
3
=2m-2
3
,
得m=0(舍去),m=
3
-
3
2
,
此時所求的解析式為:y=
2
3
3
(x-
3
+
3
2
2+3-
7
3
2

②當(dāng)GE=EF時,F(xiàn)G=2
3
m,則F(0,2
3
m-2
3
),
代入解析式得:
2
3
3
m2+
3
m-2
3
=2
3
m-2
3
,解得m=0(舍去),m=
3
2
,
此時所求的解析式為:y=
2
3
3
(x-
3
2
2-
3
2
;
③當(dāng)FG=FE時,不存在.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,人工噴泉有一個豎直的噴水槍AB,噴水口A距地面2米,噴水水流的軌跡是拋物線,如果要求水流的最高點P到噴水槍AB所在直線的距離為1米,且水流著地點C距離水槍底部B的距離為
5
2
米,那么水流的最高點距離地面是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

正方形ABCD的邊長為2,E是射線CD上的動點(不與點D重合),直線AE交直線BC于點G,∠BAE的平分線交射線BC于點O.
(1)如圖,當(dāng)CE=
2
3
時,求線段BG的長;
(2)當(dāng)點O在線段BC上時,設(shè)
CE
ED
=x
,BO=y,求y關(guān)于x的函數(shù)解析式;
(3)當(dāng)CE=2ED時,求線段BO的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知拋物線y=x2-1與x軸交于A、B兩點,與y軸交于點C.
(1)求A、B、C三點的坐標(biāo);
(2)過點A作APCB交拋物線于點P,求四邊形ACBP的面積;
(3)在x軸上方的拋物線上是否存在一點M,過M作MG⊥x軸于點G,使以A、M、G三點為頂點的三角形與△PCA相似?若存在,請求出M點的坐標(biāo);否則,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某水產(chǎn)品養(yǎng)殖企業(yè)為指導(dǎo)該企業(yè)某種水產(chǎn)品的養(yǎng)殖和銷售,對歷年市場行情和水產(chǎn)品養(yǎng)殖情況進(jìn)行了調(diào)查.調(diào)查發(fā)現(xiàn)這種水產(chǎn)品的每千克售價y1(元)與銷售月份x(月)滿足關(guān)系式y(tǒng)=-
3
8
x+36,而其每千克成本y2(元)與銷售月份x(月)滿足的函數(shù)關(guān)系如圖所示.
(1)試確定b、c的值;
(2)求出這種水產(chǎn)品每千克的利潤y(元)與銷售月份x(月)之間的函數(shù)關(guān)系式;
(3)“五•一”之前,幾月份出售這種水產(chǎn)品每千克的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,正方形ABCD中,點A、B的坐標(biāo)分別為(0,10),(8,4),點C在第一象限.動點P在正方形ABCD的邊上,從點A出發(fā)沿A?B?C?D勻速運動,同時動點Q以相同速度在x軸正半軸上運動,當(dāng)P點到達(dá)D點時,兩點同時停止運動,設(shè)運動的時間為t秒.
(1)當(dāng)P點在邊AB上運動時,點Q的橫坐標(biāo)x(長度單位)關(guān)于運動時間t(秒)的函數(shù)圖象如圖②所示,請寫出點Q開始運動時的坐標(biāo)及點P運動速度;
(2)求正方形邊長及頂點C的坐標(biāo);
(3)在(1)中當(dāng)t為何值時,△OPQ的面積最大,并求此時P點的坐標(biāo);
(4)如果點P、Q保持原速度不變,當(dāng)點P沿A?B?C?D勻速運動時,OP與PQ能否相等?若能,寫出所有符合條件的t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,兩條鋼纜具有相同的拋物線形狀.按照圖中的直角坐標(biāo)系,左面的一條拋物線可以用y=0.0225x2+0.9x+10表示,而且左右兩條拋物線關(guān)于y軸對稱.
(1)鋼纜的最低點到橋面的距離是______m;
(2)兩條鋼纜最低點之間的距離是______m;
(3)右邊的拋物線解析式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商店經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品,據(jù)市場分析,若每千克50元銷售,一個月能售出500kg,銷售單價每漲1元,月銷售量就減少10kg,針對這種水產(chǎn)品情況,請解答以下問題:
(1)當(dāng)銷售單價定為每千克55元時,計算銷售量和月銷售利潤;
(2)設(shè)銷售單價為每千克x元,月銷售利潤為y元,求y與x的關(guān)系式;
(3)商品想在月銷售成本不超過10000元的情況下,使得月銷售利潤達(dá)到8000元,銷售單價應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)在Rt△ABC中,BC=3,AB=4,則AC=______.
(2)如圖,在Rt△ABC中,∠ABC=90°,BC=3cm,AB=4cm.若點P從點B出發(fā),以2cm/s的速度在BC所在的直線上運動.設(shè)點P的運動時間為t,試求當(dāng)t為何值時,△ACP是等腰三角形?

查看答案和解析>>

同步練習(xí)冊答案