某中學數(shù)學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道l上確定點D,使CD與l垂直,測得CD的長等于21米,在l上點D的同側取點A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的長(精確到0.1米,參考數(shù)據(jù):
3
=1.732
,
2
=1.414
);
(2)已知本路段限速為50千米/小時,若測得某輛汽車從A到B用時2秒,這輛車是否超速?說明理由.
(1)由題意得,在Rt△ADC中,
∵CD=21米,∠CAD=30°,
∴AD=
CD
tan30°
=
21
3
3
=21
3
≈36.33;
在Rt△BDC中,
∵CD=21米,∠CBD=60°,
∴BD=
CD
tan60°
=
21
3
=7
3
≈12.11,
∴AB=AD-BD=36.33-12.1l=24.22≈24.2(米);

(2)∵汽車從A到B用時2秒,
∴速度為24.2÷2=12.1(米/秒),
∵l2.1×3600=43560,
∴該車速度為43.56千米/小時<50千米/小時,
∴此車在AB路段未超速.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在梯形ABCD中ABCD,對角線AC、BD交于點O,若CD=2,AB=5,則S△BOC:S△ADC=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列說法正確的是( 。
A.解直角三角形只需已知除直角外的2個元素
B.sin30°+cos30°=1
C.
a
sinA
=c或a=c•sinA
D.以上說法都不對

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,鐵路路基橫斷面為等腰梯形ABCD,斜坡BC的坡度ⅰ﹦3﹕4(ⅰ﹦
BF
CF
),路基高BF﹦3米,底CD寬為18米,求路基頂AB的寬.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在Rt△ABC中,∠C=90°,AB=2
3
,BC=
3
,那么∠B=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

為了測得聊城鐵塔的高度,小明在離鐵塔10米處的點C測得塔頂A的仰角為α,小亮在離鐵塔25米處的點D測得塔頂A的仰角為β(如圖),恰巧α+β=90度.小明和小亮很快求出了鐵塔AB的高度.你知道他倆是怎樣求出來的嗎?請寫出你的解題過程(結果精確到0.01米).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

茗茗在坡度為1:
3
的坡面上走了100m,則茗茗上升了______m.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,小明在大樓30米高(即PH=30米)的窗口P處進行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,巳知該山坡的坡度i(即tan∠ABC)為1:
3
,點P,H,B,C,A在同一個平面上,點H、B、C在同一條直線上,且PH丄HC.
(1)山坡坡角(即∠ABC)的度數(shù)等于______度;
(2)求A、B兩點間的距離(結果精確到0.1米,參考數(shù)據(jù):
3
≈1.732).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某公路防護堤的橫斷面如下圖所示.已知斜坡的坡度i=1:1,坡面的鉛直高度AC為2m,求斜坡AB的長及其坡角α(答案可保留根號).

查看答案和解析>>

同步練習冊答案