如圖,已知拋物線經(jīng)過坐標(biāo)原點O及A(-2
3
,0),其頂點為B(m,3),C是AB中點,點E是直線OC上的一個動點 (點E與點O不重合),點D在y軸上,且EO=ED.
(1)求此拋物線及直線OC的解析式;
(2)當(dāng)點E運動到拋物線上時,求BD的長;
(3)連接AD,當(dāng)點E運動到何處時,△AED的面積為
3
3
4
?請直接寫出此時E點的坐標(biāo).
分析:(1)先根據(jù)拋物線過原點和A(-2
3
, 0
),得出拋物線對稱軸為x=-
3
,故可得出B點坐標(biāo),設(shè)拋物線的解析式為y=a(x+
3
2+3,由拋物線經(jīng)過(0,0)可求出a的值,故可得出拋物線的解析式,
由C為AB的中點可得出C點坐標(biāo),進而得出直線OC的解析式;
(2)連接ED,由于點E是拋物線與直線OC的交點所以聯(lián)立二次函數(shù)與直線的解析式可求出E點坐標(biāo),過E作EF⊥y軸于F可求出OF的長,再由EO=ED可得出D點坐標(biāo),故可求出BD的長.
(3)連接DE、AE、AD,設(shè)E(x,-
3
3
x),由A,D兩點坐標(biāo)即可得出OA=2
3
,OD=
10
3
,由S四邊形AODE=S△AOE+S△DOE=S△AED+S△AOD即可得出結(jié)論.
解答:解:(1)∵拋物線過原點和A(-2
3
, 0
),
∴拋物線對稱軸為x=-
3

∴B(-
3
, 3
).
設(shè)拋物線的解析式為y=a(x+
3
2+3.
∵拋物線經(jīng)過(0,0),
∴0=3a+3.
∴a=-1.
∴y=-(x+
3
2+3,
=-x2-2
3
x.
∵C為AB的中點,A(-2
3
,0)、B(-
3
,3),
∴C(-
3
3
2
,
3
2
).
∴直線OC的解析式為y=-
3
3
x;

(2)如圖1,連接ED.
∵點E為拋物線y=-x2-2
3
x與直線y=-
3
3
x的交點(點E與點O不重合).
y=-
3
3
x
y=-x2-2
3
x
,解得
x=-
5
3
3
y=
5
3
x=0
y=0
(不合題意,舍去),
∴E(-
5
3
3
5
3
);
過E作EF⊥y軸于F,可得OF=
5
3
,
∵OE=DE,EF⊥y軸,
∴OF=DF,
∴DO=2OF=
10
3
,
∴D(0,
10
3
),
∴BD=
(
3
)2+(3-
10
3
)2
=
2
7
3


(3)如圖2,連接DE、AE、AD,設(shè)E(-a,
3
3
a)(a>0),
∵A(-2
3
,0),D(0,
2
3
3
a),
∴OA=2
3
,OD=
2
3
3
a,
∴S△AED=S△AOE+S△DOE-S△AOD=
1
2
×2
3
×
3
3
a+
1
2
×a×
2
3
3
a-
1
2
×2
3
×
2
3
3
a=
3
3
a2-a,
3
3
a2-a=
3
3
4
,
解得a=
3
3
2

∴E(-
3
3
2
,
3
2
),
同理,當(dāng)E在第四象限時,
E(
3
2
,-
1
2
).
故E點的坐標(biāo)為(-
3
3
2
,
3
2
)或(
3
2
,-
1
2
).
點評:本題考查的是二次函數(shù)綜合題,涉及到用待定系數(shù)法求一次函數(shù)及二次函數(shù)的解析式、三角形的面積公式等知識,根據(jù)題意作出輔助線是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過原點O和x軸上另一點A,它的對稱軸x=-2與x軸交于點C,直線y=-精英家教網(wǎng)2x+1經(jīng)過拋物線上一點B(2,m),且與y軸.直線x=-2分別交于點D、E.
(1)求m的值及該拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)①判斷△CBE的形狀,并說明理由;②判斷CD與BE的位置關(guān)系;
(3)若P(x,y)是該拋物線上的一個動點,是否存在這樣的點P,使得PB=PE?若存在,試求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設(shè)運動的時間為t秒.
①當(dāng)t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過原點O和x軸上另一點A,它的對稱軸x=2與x軸交于點C,直線y=-2x-1經(jīng)過拋物線上一點B(-2,m),且與y軸、直線x=2分別交于點D、E,
(1)求m的值及該拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)求證:①CB=CE;②D是BE的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過坐標(biāo)原點,與x軸的另一個交點為A,且頂點M坐標(biāo)為(1,2),
(1)求該拋物線的解析式;
(2)現(xiàn)將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P,△CDP的面積為S,求S關(guān)于m的關(guān)系式;
(3)當(dāng)m=2時,點Q為平移后的拋物線的一動點,是否存在這樣的⊙Q,使得⊙Q與兩坐標(biāo)軸都相切?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過原點O和x軸上的另一點E,頂點為M(2,4),矩形ABCD的頂點A與O重合,AD,AB分別在x,y軸上,且AD=2,AB=3.
(1)求該拋物線對應(yīng)的函數(shù)解析式;
(2)現(xiàn)將矩形ABCD以每秒1個單位長度的速度從左圖所示位置沿x軸的正方向勻速平行移動;同時AB上一動點P也以相同的速度從點A出發(fā)向B勻速運動,設(shè)它們的運動時間為t秒(0≤t≤3),直線AB與拋物線的交點為N,設(shè)多邊形PNCD的面積為S,試探究S是否存在最大值?若存在,求出這個最大值;若不存在,說明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案