【題目】如圖,已知線段ABCD的公共部分BD ,線段ABCD的中點(diǎn)E、F之間的距離是25cm,試求AB、CD的長(zhǎng).

【答案】AB=30cm,CD=40cm

【解析】試題分析:先設(shè)BD=xcm,由題意得AB=3xcm,CD=4xcm,AC=6xcm,再根據(jù)中點(diǎn)的定義,用含x的式子表示出AECF,再根據(jù)EF=AC-AE-CF=2.5x,且EF之間距離是25cm,所以2.5x=25,解方程求得x的值,即可求AB,CD的長(zhǎng).

試題解析:設(shè)BD=xcm,則AB=3xcm,CD=4xcm,AC=6xcm

∵點(diǎn)E、點(diǎn)F分別為AB、CD的中點(diǎn),

AE=AB=1.5xcmCF=CD=2xcm

EF=ACAECF=2.5xcm

EF=25cm,

2.5x=25,解得:x=10

AB=30cm,CD=40cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸是一個(gè)非常重要的數(shù)學(xué)工具,它使數(shù)和數(shù)軸上的點(diǎn)建立起對(duì)應(yīng)關(guān)系,揭示了數(shù)與點(diǎn)之間的內(nèi)在聯(lián)系,它是“數(shù)形結(jié)合”的基礎(chǔ)。小白在草稿紙上畫(huà)了一條數(shù)軸進(jìn)行操作探究:

操作一:

(1)折疊紙面,若使1表示的點(diǎn)與﹣1表示的點(diǎn)重合,則﹣2表示的點(diǎn)與_______表示的點(diǎn)重合;

操作二:

(2)折疊紙面,若使1表示的點(diǎn)與﹣3表示的點(diǎn)重合,回答以下問(wèn)題:

①3表示的點(diǎn)與_______表示的點(diǎn)重合;

②若數(shù)軸上A、B兩點(diǎn)之間距離為7(A在B的左側(cè)),且A、B兩點(diǎn)經(jīng)折疊后重合,則A、B兩點(diǎn)表示的數(shù)分別是______________;

操作三:

(3)在數(shù)軸上剪下9個(gè)單位長(zhǎng)度(從﹣1到8)的一條線段,并把這條線段沿某點(diǎn)折疊,然后在重疊部分某處剪一刀得到三條線段(例如下圖). 若這三條線段的長(zhǎng)度之比為1:1:2,則折痕處對(duì)應(yīng)的點(diǎn)所表示的數(shù)可能是_____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過(guò)點(diǎn)E作EF∥AB,交BC于點(diǎn)F.

(1)求證:四邊形DBFE是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形DBFE是菱形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算(6ab)2·(3a2b)的結(jié)果是( )

A. 18a4b3B. 36a4b3C. 108a4b3D. 108a4b3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠12,34BODAOB90°.下列判斷:①射線OF是∠BOE的角平分線;②∠DOE的補(bǔ)角是∠BOC③∠AOC的余角只有∠COD;④∠DOE的余角有∠BOE和∠COD;⑤∠CODBOE.其中正確的有(

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年泰州市實(shí)現(xiàn)生產(chǎn)總值(GDP5107億元,5107億元用科學(xué)記數(shù)法表示為_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛公共汽車(chē)從車(chē)站開(kāi)出,加速行駛一段時(shí)間后開(kāi)始勻速行駛.過(guò)了一段時(shí)間,汽車(chē)到達(dá)下一車(chē)站.乘客上下車(chē)后汽車(chē)開(kāi)始加速,一段時(shí)間后又開(kāi)始勻速行駛.下圖中近似地刻畫(huà)出汽車(chē)在這段時(shí)間內(nèi)的速度變化情況的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線的對(duì)稱(chēng)軸為x=1,B(3,0),C(0,-3),

(1)求二次函數(shù)y=ax2+bx+c的解析式;

(2)在拋物線對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使點(diǎn)P到B、C兩點(diǎn)距離之差最大?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)平行于x軸的一條直線交拋物線于M,N兩點(diǎn),若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案