(2012•玉林)如圖,矩形OABC內(nèi)接于扇形MON,當(dāng)CN=CO時(shí),∠NMB的度數(shù)是
30°
30°
分析:首先連接OB,由矩形的性質(zhì)可得△BOC是直角三角形,又由OB=ON=2OC,∠BOC的度數(shù),又由圓周角定理求得∠NMB的度數(shù).
解答:解:連接OB,
∵CN=CO,
∴OB=ON=2OC,
∵四邊形OABC是矩形,
∴∠BCO=90°,
∴cos∠BOC=
OC
OB
=
1
2

∴∠BOC=60°,
∴∠NMB=
1
2
∠BOC=30°.
故答案為:30°.
點(diǎn)評(píng):此題考查了圓周角定理、矩形的性質(zhì)以及特殊角的三角函數(shù)值.此題難度適中,注意輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•玉林)如圖,在平面直角坐標(biāo)系xOy中,矩形AOCD的頂點(diǎn)A的坐標(biāo)是(0,4),現(xiàn)有兩動(dòng)點(diǎn)P,Q,點(diǎn)P從點(diǎn)O出發(fā)沿線段OC(不包括端點(diǎn)O,C)以每秒2個(gè)單位長度的速度勻速向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)沿線段CD(不包括端點(diǎn)C,D)以每秒1個(gè)單位長度的速度勻速向點(diǎn)D運(yùn)動(dòng).點(diǎn)P,Q同時(shí)出發(fā),同時(shí)停止,設(shè)運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)t=2(秒)時(shí),PQ=2
5

(1)求點(diǎn)D的坐標(biāo),并直接寫出t的取值范圍.
(2)連接AQ并延長交x軸于點(diǎn)E,把AE沿AD翻折交CD延長線于點(diǎn)F,連接EF,則△AEF的面積S是否隨t的變化而變化?若變化,求出S與t的函數(shù)關(guān)系式;若不變化,求出S的值.
(3)在(2)的條件下,t為何值時(shí),四邊形APQF是梯形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•玉林)如圖,兩塊相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一塊繞直角頂點(diǎn)B逆時(shí)針旋轉(zhuǎn)到△A′BC′的位置,點(diǎn)C′在AC上,A′C′與AB相交于點(diǎn)D,則C′D=
5
2
5
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•玉林)如圖,Rt△ABC的內(nèi)切圓⊙O與兩直角邊AB,BC分別相切于點(diǎn)D,E,過劣弧
DE
(不包括端點(diǎn)D,E)上任一點(diǎn)P作⊙O的切線MN與AB,BC分別交于點(diǎn)M,N,若⊙O的半徑為r,則Rt△MBN的周長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•玉林)如圖,已知點(diǎn)O為Rt△ABC斜邊AC上一點(diǎn),以點(diǎn)O為圓心,OA長為半徑的⊙O與BC相切于點(diǎn)E,與AC相交于點(diǎn)D,連接AE.
(1)求證:AE平分∠CAB;
(2)探求圖中∠1與∠C的數(shù)量關(guān)系,并求當(dāng)AE=EC時(shí)tanC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•玉林)如圖,在平面直角坐標(biāo)系xOy中,梯形AOBC的邊OB在x軸的正半軸上,AC∥OB,BC⊥OB,過點(diǎn)A的雙曲線y=
k
x
的一支在第一象限交梯形對(duì)角線OC于點(diǎn)D,交邊BC于點(diǎn)E.
(1)填空:雙曲線的另一支在第
象限,k的取值范圍是
k>0
k>0

(2)若點(diǎn)C的坐標(biāo)為(2,2),當(dāng)點(diǎn)E在什么位置時(shí),陰影部分的面積S最小?
(3)若
OD
OC
=
1
2
,S△OAC=2,求雙曲線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案