能否從(a+5)x=2-b得到x=?為什么?反之能否從x=得到x(a+5)=2-b?為什么?
解:不能從(a+5)x=2-b得到x=,
因?yàn)椴荒艽_定a+5是否為0,能從x=,得到x(a+5)=2-b,
因?yàn)閍+5為分母,所以a+5≠0,
可用等式性質(zhì)2,在等式兩邊同時(shí)乘以(a+5)即可。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

一座隧道的截面由拋物線和長方形構(gòu)成,長方形的長為8m,寬為2m,隧道最高點(diǎn)P位于AB的精英家教網(wǎng)中央且距地面6m,建立如圖所示的坐標(biāo)系:
(1)求拋物線的解析式;
(2)一輛貨車高4m,寬2m,能否從該隧道內(nèi)通過,為什么?
(3)如果隧道內(nèi)設(shè)雙行道,那么這輛貨車是否可以順利通過,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)一個(gè)門框的高2米,寬1米,現(xiàn)有一塊長為3米,寬為2.2米的薄木板能否從門框內(nèi)通過?為什么?(參考數(shù)據(jù)
5
≈2.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南湖區(qū)二模)在特殊四邊形的復(fù)習(xí)課上,王老師出了這樣一道題:
如圖1,在?ABCD中,E、F、G、H分別為AB,BC,CD,DA邊上的動(dòng)點(diǎn),連接EG,HF相交于點(diǎn)O,且∠HOE=∠ADC,若AB=a,AD=b,試探究:EG與FH的數(shù)量關(guān)系.
經(jīng)過小組討論后,小聰建議分以下三步進(jìn)行,請(qǐng)你解答:
(1)特殊情況,探索結(jié)論
當(dāng)?ABCD是邊長為a的正方形時(shí)(如圖2),請(qǐng)寫出EG與FH的數(shù)量關(guān)系(不必證明);
(2)嘗試變題,再探思路
當(dāng)?ABCD是邊長為a的菱形時(shí)(如圖3),EG與FH又有怎樣的數(shù)量關(guān)系呢?
小聰想:要求EG與FH的數(shù)量關(guān)系,就要構(gòu)成全等三角形或相似三角形,于是,分別過點(diǎn)G、H作GM⊥AB于點(diǎn)M,HN⊥BC于點(diǎn)N,在△HNF和△GME中,有∠GME=∠HNF=Rt∠,由菱形面積與性質(zhì)可得GM=HN,能否從已知條件得到∠MGE=∠NHF呢?請(qǐng)你根據(jù)小聰?shù)乃悸吠瓿山獯疬^程;
(3)特例啟發(fā),解答題目
猜想:原題中EG與FH的數(shù)量關(guān)系是
EG
FH
=
b
a
EG
FH
=
b
a
,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一座隧道的截面由拋物線和長方形構(gòu)成,長方形的長為8m,寬為2m,隧道最高點(diǎn)P位于AB的中央且距地面6m,建立如圖所示的坐標(biāo)系.
(1)求拋物線的表達(dá)式;
(2)一輛貨車高4m,寬2m,能否從該隧道內(nèi)通過,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,從一個(gè)邊長為1米的正方形鐵皮中剪下一個(gè)扇形.
(1)求這個(gè)扇形的面積(結(jié)果保留π);
(2)能否從剩下的余料中剪出一圓作為底面與此扇形圍成一個(gè)圓錐?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案