【題目】如圖,是將拋物線 平移后得到的拋物線,其對稱軸為 ,與x軸的一個交點為A ,另一交點為B,與y軸交點為C.
(1)求拋物線的函數(shù)表達式;
(2)若點 為拋物線上一點,且BC⊥NC,求點N的坐標;
(3)點P是拋物線上一點,點Q是一次函數(shù) 的圖象上一點,若四邊形OAPQ為平行四邊形,這樣的點P、Q是否存在?若存在,分別求出點P、Q的坐標,若不存在,說明理由.

【答案】
(1)解:設拋物線的解析式是

代入得 ,解得,

則拋物線的解析式是 ,即 ;


(2)解:

方法一:設直線BC的解析式為

∴直線BC的解析式為 ,

由BC⊥NC,則設直線CN的解析式為

,即直線CN的解析式為

∵N為直線BC與CN的交點,

∴聯(lián)立方程得: ,即 ,

,則N的坐標是

方法二:在 中令 ,則 ,

即C的坐標是 ,OC=3.

∵B的坐標是 ,

∴OB=3,

∴OC=OB,則△OBC是等腰直角三角形.

∴∠OCB=45°,

過點N作NH⊥y軸,垂足是H.

∵∠NCB=90°,∴∠NCH=45°,

∴NH=CH,∴HO=OC+CH=3+CH=3+NH,

設點N縱坐標是

解得 (舍去)或 ,

∴N的坐標



(3)解:∵四邊形OAPQ是平行四邊形,

則PQ=OA=1,且PQ∥OA,

,則 代入

,

整理,得 ,

解得

的值為3或

∴P、Q的坐標是


【解析】(1)由其對稱軸為 x = 1 ,可得頂點橫坐標為1,再由與x軸的一個交點為A ( 1 , 0 ),且由平移可得a=-1,所以易由頂點式求得解析式為y = x 2 + 2 x + 3
(2)由B(3,0)C(0,3)易得直線BC為y = x + 3 ,由于BC⊥NC,可得直線NC的斜率k=1,結(jié)合點C(0,3),可得到直線NC為y = x + 3;所求點N為二次函數(shù)與直線NC的交點,連列方程組可得N的坐標是 ( 1 , 4 )。
(3)由四邊形OAPQ是平行四邊形易得PQ=OA=1,且PQ∥OA,所以若設 P ( t , t 2 + 2 t + 3 ),則可得 Q ( t + 1 , t 2 + 2 t + 3 )由于Q為直線y = x + 的點,代入可計算出t= 0 或 t = ,代入所設 P ( t , t 2 + 2 t + 3 ), Q ( t + 1 , t 2 + 2 t + 3 ) 即可得兩點坐標。
【考點精析】解答此題的關鍵在于理解二次函數(shù)的圖象的相關知識,掌握二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點,以及對二次函數(shù)的性質(zhì)的理解,了解增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax﹣a(a為常數(shù))的圖象與y軸相交于點A,與函數(shù)y= 的圖象相交于點B(m,1).

(1)求點B的坐標及一次函數(shù)的解析式;
(2)若點P在y軸上,且△PAB為直角三角形,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的四個頂點分別在四條平行線l1、l2、l3、l4上,這四條直線中相鄰兩條之間的距離依次為h1、h2、h3 . 若h1=2,h2=1,則正方形ABCD的面積為(
A.9
B.10
C.13
D.25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,火車站、碼頭分別位于A,B兩點,直線a和b分別表示鐵路與河流.

(1)從火車站到碼頭怎樣走最近,畫圖并說明理由;

(2)從碼頭到鐵路怎樣走最近,畫圖并說明理由;

(3)從火車站到河流怎樣走最近,畫圖并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下列各數(shù)分別填入相應的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.

(1)整數(shù)集合{ …}

(2)非正數(shù)集合{ …}

(3)正有理數(shù)集合{ …}

(4)無理數(shù)集合{ …}

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 RtABC 中,∠C=90°,AC=8cm,BC=6cm,M AC上,且AM=6cm,過點 A( BC AC 同側(cè))作射線 ANAC,若動點 P 從點 A 出發(fā),沿射線 AN 勻速運動,運動速度為 1cm/s,設點 P 運動時間為 t 秒.

(1)經(jīng)過 秒時,RtAMP 是等腰直角三角形?

(2)經(jīng)過幾秒時,PM⊥MB?

(3)經(jīng)過幾秒時,PM⊥AB?

(4)△BMP 是等腰三角形時,直接寫出 t 的所有值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人共同計算一道整式乘法題:(2x+a)(3x+b).甲由于把第一個多項式中的“+a”看成了“﹣a”,得到的結(jié)果為6x2+11x10;乙由于漏抄了第二個多項式中x的系數(shù),得到的結(jié)果為2x29x+10

(1)a、b的值.

(2)計算這道乘法題的正確結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】南昌的霧霾引起了小張對環(huán)保問題的重視.一次旅游小張思考了一個問題.從某地到南昌,若乘火車需要小時,若乘汽車需要小時.這兩種交通工具平均每小時二氧化碳的排放量之和為千克,火車全程二氧化碳的排放總量比汽車的多千克,分別求火車和汽車平均每小時二氧化碳的排放量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市預測某飲料有發(fā)展前途,用1600元購進一批飲料,面市后果然供不應求,又用6000元購進這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2.

(1)第一批飲料進貨單價多少元?

(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?

查看答案和解析>>

同步練習冊答案