【題目】我們規(guī)定,若關(guān)于 x 的一元一次方程 ax=b 的解為 x=ba,則稱該方程的為差解方程,例如:3x=的解為x= =-3,則該方程3x=就是差解方程.

請根據(jù)以上規(guī)定解答下列問題

(1)若關(guān)于 x 的一元一次方程-5x=m+1 是差解方程,則 m=_____.

(2)若關(guān)于 x 的一元一次方程 2x=ab+3a+1 是差解方程,且它的解為 x=a,求代數(shù)式(ab+22019的值.

【答案】1;(2-1

【解析】

1)解方程,并計算對應b-a的值與方程的解恰好相等,所以是差解方程;
2)解方程,根據(jù)差解方程的定義列式,解出即可.

解:(1-5x=m+1

因為關(guān)于 x 的一元一次方程-5x=m+1 是差解方程,

所以

解得

2)因為關(guān)于 x 的一元一次方程 2x=ab+3a+1 是差解方程,且它的解為 x=a,

所以a= ab+3a+1-2,

所以ab=-2a+1,ab=-a-1

所以a=2

所以(ab+22019=-a-1+22019=-2-1+22019=-1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】中,,點分別是邊,上的點,點是一動點.,.

1)若點在線段上,且,如圖1,則_____________

2)若點在邊上運動,如圖2所示,請猜想,,之間的關(guān)系,并說明理由;

3)若點運動到邊的延長線上,如圖3所示,則,,之間又有何關(guān)系?請直接寫出結(jié)論,不用說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,ACB=90°,tanBAC=. D在邊AC上(不與AC重合),連結(jié)BDFBD中點.

1)若過點DDEABE,連結(jié)CFEF、CE,如圖1.設,則k= ;

2)若將圖1中的ADE繞點A旋轉(zhuǎn),使得DE、B三點共線,點F仍為BD中點,如圖2所示.求證:BE-DE=2CF;

3)若BC=6,點D在邊AC的三等分點處,將線段AD繞點A旋轉(zhuǎn),點F始終為BD中點,求線段CF長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是∠AOB的平分線上一點,ECOA,EDOB,垂足分別是C,D.下列結(jié)論中正確的有( 。

1EDEC;(2ODOC;(3)∠ECD=∠EDC;(4EO平分∠DEC;(5OECD;(6)直線OE是線段CD的垂直平分線.

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩地相距400千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地的路程y(千米)與所用時間x(小時)之間的函數(shù)關(guān)系,折線BCD表示轎車離甲地的路程y(千米)與x(小時)之間的函數(shù)關(guān)系,根據(jù)圖象解答下列問題:

1)求線段CD對應的函數(shù)表達式;

2)求E點的坐標,并解釋E點的實際意義;

3)若已知轎車比貨車晚出發(fā)2分鐘,且到達乙地后在原地等待貨車,則當x= 小時,貨車和轎車相距30千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定,對數(shù)軸上的任意點P進行如下操作:先將點P表示的數(shù)乘以﹣1,再把所得數(shù)對應的點向右平移2個單位,得到點P的對應點P'.現(xiàn)對數(shù)軸上的點A,B進行以上操作,分別得到點A'B'

1)若點A對應的數(shù)是﹣2,則點A'對應的數(shù)x=     ;若點B'對應的數(shù)是2,則點B對應的數(shù)y=    

2)在(1)的條件下,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用一條24cm的細繩圍成一個等腰三角形。

1)如果腰長是底邊的2倍,那么各邊的長是多少?

2)能圍成有一邊長為4cm的等腰三角形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中考體育測試前,某區(qū)教育局為了了解選報引體向上的初三男生的成績情況,隨機抽測了本區(qū)部分選報引體向上項目的初三男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計圖:

請你根據(jù)圖中的信息,解答下列問題:

)寫出扇形圖中__________,并補全條形圖.

)在這次抽測中,測試成績的眾數(shù)和中位數(shù)分別是__________、__________

)該區(qū)體育中考選報引體向上的男生共有人,如果體育中考引體向上達個以上(含個)得滿分,請你估計該區(qū)體育中考中選報引體向上的男生能獲得滿分的有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點P、Q分別是等邊△ABC邊AB、BC上的動點(端點除外),點P從頂點A、點Q從頂點B同時出發(fā),且它們的運動速度相同,連接AQ、CP交于點M.

(1)求證:△ABQ≌△CAP;

(2)當點P、Q分別在AB、BC邊上運動時,∠QMC變化嗎?若變化,請說明理由;若不變,求出它的度數(shù).

(3)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠QMC變化嗎?若變化,請說明理由;若不變,直接寫出它的度數(shù).

查看答案和解析>>

同步練習冊答案