【題目】將直角三角形紙板OAB按如圖所示方式放置在平面直角坐標(biāo)系中,OBx軸上,OB=4OA=2將三角形紙板繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn),每秒旋轉(zhuǎn)60°,則第2019秒時(shí),點(diǎn)A的對應(yīng)點(diǎn)A 的坐標(biāo)為(

A. (-3,-B. 3,-C. (-3,D. 0,2

【答案】A

【解析】

根據(jù)OA的長度結(jié)合旋轉(zhuǎn)的性質(zhì)即可得出第1秒時(shí),點(diǎn)A的對應(yīng)點(diǎn)A′的坐標(biāo)為(0,4),再由三角板每秒旋轉(zhuǎn)60°,可得出點(diǎn)A′的位置6秒一循環(huán),由此即可得出第2019秒時(shí),點(diǎn)A的對應(yīng)點(diǎn)A′的坐標(biāo)與第3秒時(shí)相同,此題得解.

解:∵OA=4,∠AOB=30°,將三角板繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn),每秒旋轉(zhuǎn)60°,

∴第3秒時(shí),點(diǎn)A的對應(yīng)點(diǎn)A′的坐標(biāo)為(-3, ).

∵三角板每秒旋轉(zhuǎn)60°

∴點(diǎn)A′的位置6秒一循環(huán).

2019=336×6+3

∴第2019秒時(shí),點(diǎn)A的對應(yīng)點(diǎn)A′的坐標(biāo)為(-3 ).

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鄭州市創(chuàng)建國家生態(tài)園林城市實(shí)施方案已經(jīng)出臺,到20195月底,市區(qū)主城區(qū)要達(dá)到或超過《國家生態(tài)園林城市標(biāo)準(zhǔn)》各項(xiàng)指標(biāo)要求.鄭州市林蔭路推廣率要超過85%,在推進(jìn)此活動中,鄭州市某小區(qū)決定購買A、B兩種喬木樹,經(jīng)過調(diào)查,獲取信息如下:如果購買A種樹木40棵,B種樹木60棵,需付款11400元;如果購買A種樹木50棵,B種樹木50棵,需付款10500元.

樹種

購買數(shù)量低于50

購買數(shù)量不低于50

A

原價(jià)銷售

以八折銷售

B

原價(jià)銷售

以九折銷售

1A種樹木與B種樹木的單價(jià)各多少元?

2)經(jīng)過測算,需要購置A、B兩種樹木共100棵,其中B種樹木的數(shù)量不多于A種樹木的三分之一,如何購買付款最少?最少費(fèi)用是多少元?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學(xué)興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時(shí),第二次是陽光與地面成30°角時(shí),兩次測量的影長相差8米,則樹高_____________(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將曲線c1yx0)繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得到曲線c2,A為直線yx上一點(diǎn),P為曲線c2上一點(diǎn),PAPO,且PAO的面積為6,直線yx交曲線c1于點(diǎn)B,則OB的長( 。

A.2B.5C.3D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個三角形有一條邊上的高等于這條邊的一半,那么我們把這個三角形叫做半高三角形

如圖1,對于ABCBC邊上的高AD等于BC的一半,ABC就是半高三角形,此時(shí),稱ABCBC類半高三角形;如圖2,對于EFGEF邊上的高GH等于EF的一半,EFG就是半高三角形,此時(shí),稱EFGEF類半高三角形.

1)直接寫出下列3個小題的答案.

①若一個三角形既是等腰三角形又是半高三角形,則其底角度數(shù)的所有可能值為 

②若一個三角形既是直角三角形又是半高三角形,則其最小角的正切值為 

③如圖3,正方形網(wǎng)格中,LM是已知的兩個格點(diǎn),若格點(diǎn)N使得LMN為半高三角形,且LMN為等腰三角形或直角三角形,則這樣的格點(diǎn)N共有  個.

2)如圖,平面直角坐標(biāo)系內(nèi),直線yx+2與拋物線yx2交于R,S兩點(diǎn),點(diǎn)T坐標(biāo)為(0,5),點(diǎn)P是拋物線yx2上的一個動點(diǎn),點(diǎn)Q是坐標(biāo)系內(nèi)一點(diǎn),且使得RSQRS類半高三角形.

①當(dāng)點(diǎn)P介于點(diǎn)R與點(diǎn)S之間(包括點(diǎn)R,S),且PQ取得最小值時(shí),求點(diǎn)P的坐標(biāo).

②當(dāng)點(diǎn)P介于點(diǎn)R與點(diǎn)O之間(包括點(diǎn)R,O)時(shí),求PQ+QT的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)O在對角線AC上,以OA的長為半徑的OADAC分別交于點(diǎn)E,F,且ACB=∠DCE

1)判斷直線CEO的位置關(guān)系,并證明你的結(jié)論;

2)若tan∠ACB=BC=4,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠現(xiàn)在平均每天比原計(jì)劃多生產(chǎn)50臺機(jī)器,現(xiàn)在生產(chǎn)600臺機(jī)器所需要的時(shí)間與原計(jì)劃生產(chǎn)450臺機(jī)器所需要的時(shí)間相同.

(1)原計(jì)劃平均每天生產(chǎn)多少臺機(jī)器?

(2)若該工廠要在不超過5天的時(shí)間,生產(chǎn)1100臺機(jī)器,則平均每天至少還要再多生產(chǎn)多少臺機(jī)器?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx-的圖象經(jīng)過點(diǎn)A-10)、C2,0),與y軸交于點(diǎn)B,其對稱軸與x軸交于點(diǎn)D

1)求二次函數(shù)的表達(dá)式及其頂點(diǎn)坐標(biāo);

2Mst)為拋物線對稱軸上的一個動點(diǎn),

①若平面內(nèi)存在點(diǎn)N,使得AB、MN為頂點(diǎn)的四邊形為矩形,直接寫出點(diǎn)M的坐標(biāo);

②連接MA、MB,若∠AMB不小于60°,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程有兩個實(shí)數(shù)根、

1求實(shí)數(shù)k的取值范圍;

2、滿足,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案