如圖所示,AB是⊙O的直徑,C為⊙O上一點,AD和過C點的切線互相垂直,垂足為D,求證:AC平分∠DAB.

【答案】分析:連接OC,由CD是⊙O的切線,AD⊥CD可以得到OC∥AD,然后可以推出∠1=∠2,又OC=OA,由等邊對等角得∠1=∠3,所以∠2=∠3,即AC平分∠DAB.
解答:證明:如右圖所示,連接OC,
∵CD是⊙O的切線,
∴OC⊥CD;
又AD⊥CD,
∴OC∥AD,
∴∠1=∠2,
∵OC=OA,
∴∠1=∠3,
∴∠2=∠3,即AC平分∠DAB.
點評:本題利用了切線的性質,平行線的判定和性質,等邊對等角等知識解決問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O的直徑,AD是弦,∠DBC=∠A.
(1)求證:BC與⊙O相切;
(2)若OC∥AD,OC交BD于點E,BD=6,CE=4,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O的直徑,AD是弦,∠DBC=∠A,OC⊥BD于點E.
(1)求證:BC是⊙O的切線;
(2)若BD=12,EC=10,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O的直徑,弦CD⊥AB于點P,CD=10cm,AP:PB=1:5,則⊙O的半徑為
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,AB是⊙O直徑,OD⊥弦BC于點F,且交⊙O于點E,且∠AEC=∠ODB.
(1)判斷直線BD和⊙O的位置關系,并給出證明;
(2)當AB=10,BC=8時,求△DFB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,AB是⊙O直徑,∠D=35°,則∠BOC等于( 。

查看答案和解析>>

同步練習冊答案